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Academic research in mobile wireless networks relies largely on simulation.

However, fidelity of simulation results has always been a concern, especially when

the protocols being studied are affected by the propagation and interference charac-

teristics of the radio channels. Inherent difficulty in faithfully modeling the wireless

channel behaviors has encouraged several researchers to build wireless testbeds.

One key difficulty of setting up a multi-hop wireless testbed is that it must be spread

over a large physical space to introduce non-overlapping collision domains. This

makes the setup, management and configuration of these testbeds challenging. In

this thesis we focus on alleviating the space problem by designing a miniaturized

802.11b based, multi-hop wireless network testbed, called MiNT. MiNT occupies

significantly smaller space compared to existing testbeds in use for mobile wireless
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experiments. Engineered completely from off-the-shelf components, each node in

MiNT supports untethered mobility that is controlled remotely. We also present

solutions for problems associated with node mobility, namely node tracking in the

testbed arena, and collision free node movement.

In order to provide flexibility in terms of setup, management and reconfigurabil-

ity, MiNT provides a graphical interface for getting complete view of the testbed.

Mint cOntrol and Visualization InterfacE (MOVIE) provides a suite of necessary

controls for configuring each node, the entire topology, as well as, collects and

displays experiment related statistics in real-time as well as offline. In addition to

supporting the regular features for remotely operating the testbed, MiNT also sup-

ports two novel features: (i) hybrid simulation capability, and (ii) a fault injection

and analysis tool (FIAT). Hybrid simulation allows execution of simulation exper-

iments on MiNT with the modeled link, MAC and physical layer replaced by real

hardware. Our results show that hybrid simulation provides more accurate results

compared to pure simulation. Our hybrid simulation technique implemented on top

of ns-2 has rich functionalities, like execution rollback, pause and breakpointing

execution on flagged events, that makes debugging easier. The fault injection and

analysis tool helps in debugging implementations of network protocols by introduc-

ing user-specified network faults without requiring any code instrumentation.

In the thesis we demonstrate the fidelity of our miniaturization approach by

comparing experimental results on it with similar experiments conducted on a non-

miniaturized testbed. Evaluations of hybrid simulation results against pure simula-

tion results show the efficacy of the new approach in evaluating wireless protocols

and applications. Evaluations of MOVIE and FIAT is intended to highlight the

correctness and usability of the tools. Finally, we also a present a case study to

underline the usefulness of MiNT, and a critique on remote usability of MiNT.
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Chapter 1

Introduction

“Today’s scientists have substituted mathematics for experiments,

and they wander off through equation after equation, and eventually

build a structure which has no relation to reality.”

— Nikola Tesla, Modern Mechanics and Inventions, July, 1934

A large set of academic research in wireless networks uses simulation as the

primary means of validating their results. Simulation has several advantages which

is highlighted by its effective application in understanding wired network behav-

iors. This has prompted the use of simulation tools in wireless network research

as well. However, choosing correct abstractions in wireless network simulation is

more complex than wired network because of the nature of wireless media. Ques-

tions regarding the credibility of simulation results is not uncommon [PJL02]. This

tension has motivated researchers to validate their protocols on more realistic set-

ting than simulation by building testbeds. We begin by highlighting one of the most

common pitfalls of wireless simulation, and subsequently broach the topic of using

testbeds as an alternative. The next topic of discussion focuses on a key set of re-

quirements for designing a successful testbed for wireless experimentation. Finally,

1



1. INTRODUCTION 2

the thesis proposal is a step towards designing an efficient wireless testbed with a

comprehensive suite of software tools that supports experimentation.

1.1 Fidelity of Wireless Simulation Experiments

A correct simulation experiment should match closely the results from a similar ex-

periment in a real set-up. This requires that various characteristics of the real world

that has any impact on the protocol be correctly modeled. Thus the fidelity of a

simulation experiment is dependent largely on the accuracy of the models used in

the simulation. A “good” simulation experiment is one in which an experimenter is

able to choose appropriate models to faithfully capture the behavior of the environ-

ment in which she wants to validate the protocol.

For wireless networks, setting up a good simulation experiment faces two prob-

lems: firstly, accurate and detailed models of the wireless channels are difficult to

design, and secondly, detailed models are usually compute intensive, thereby in-

creasing the overall simulation time. For instance the physical layer in wireless

network stack is inherently complex due to the interaction of multiple factors that

affect the wireless physical layer. These factors include path loss (large-scale fad-

ing), multi-path effects (small-scale fading), interference and channel noise. Path

loss and multi-path effects are two key factors that determine the signal propaga-

tion behavior of wireless channels. Hence path loss and multi-path effects should

be accurately modeled in order to model signal propagation. The path loss model

calculates the average signal power loss of a path on a terrain. The commonly used

path loss models in most simulators, like GloMoSim [ZBG98] and ns-2 [NS-], are

the free-space and two-ray path loss models. The free-space model is a basic ref-

erence model and is an idealized propagation model. The two-ray path loss model

takes into account both the direct path and a ground reflection path of propagation.
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(b)(a)

Figure 1.1: Comparing the commonly used signal propagation model to the typical

real world signal propagation characteristics. Figure (a) represents a typical signal

propagation characteristic from a point source. Different shades of gray denote

different connectivity levels. Figure (b) shows the signal propagation as a result of

the commonly used model in simulation.

On the other hand, the models for multi-path or small-scale fading effects calculate

variation of signal powers at receivers due to varying path conditions from trans-

mitter to receiver. Fading models with Rayleigh and Ricean distributions [Skl97]

are commonly used to describe wireless environments.

Using the the commonly used path loss models, the received signal strength

at a receiver is only a function of the distance between the transmitter and the re-

ceiver. In other words, the signal propagation region is a spherical zone around the

transmitter such that points that are equidistant from the source always have the

same received signal strength. It is common for most simulation experiments in the

literature to use this signal propagation model. However, the reality is typically dif-

ferent, as shown in Figure 1.11. It is seen in the figure that in real setting the signal

strength varies non-uniformly with distance, whereas the modeled signal strength

drops uniformly with increasing distance from the source.

1This figure is taken from http://www.comgate.com/ntdsign/wireless.html
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It is true that more complex models can capture the behaviors accurately. How-

ever, as complex models are more compute intensive, a common practice in most

reported simulation experiments has been to resort to simplified models, without

much attention to the impact that the omission of details in the models might have

on the final results. This has been pointed out by Heidemann et al. [HBE01]

and Takai et al. [TMB01]. With more field experiments, inadequacies of the

models are increasingly becoming evident. For instance, Zhou et al. observed

that due to non-isotropic path losses radio irregularity is a non-negligible phe-

nomenon in wireless communication [ZHKS04]. The difference in signal prop-

agation effects in simulation and in reality have also been evaluated thoroughly

[GEW+03, KNG+04]. Channel error is yet another phenomenon which is hard to

model correctly [KWK03, KZJL03]. With a growing interest in cross-layer proto-

col optimizations [HJ04], it is important to get accurate values of the lower layer

phenomena. For example an ad hoc routing protocol that uses the signal strength

value to make path selection decisions will require the signal strength variations to

be reflected correctly for proper evaluation. Other examples of cross-layer proto-

col optimizations include hop-by-hop error control in multi-hop wireless networks,

channel state-dependent packet scheduling, and signal strength-aware packet rout-

ing in ad hoc networks. Unless simulation experiments are designed more carefully,

simulation results will suffer from lack of fidelity for wireless protocol evaluations.

An alternate way to validate a protocol is to execute it in a real set-up. However,

simulation has its own merits, namely, (i) the repeatable results of radio perfor-

mance are hard to generate in an uncontrolled realistic setting, (ii) simulation tools

are easily and freely available, in contrast to testbeds that are usually costly and

time-consuming to set up. Although testbeds have been used occasionally to evalu-

ate wireless protocol performance, its use has not been as widespread as simulation.
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Most testbeds are custom built for specific projects, and unusable for other experi-

ments. There is also no easy approach to build a standalone testbed within limited

time frame. It is therefore necessary to provide a standard methodology for setting

up standalone testbeds; if such testbeds could be shared across a wider research

community it can become a useful and more accurate alternative to simulation.

1.2 Wireless Network Testbed Design Challenges

Having argued for the importance of using testbeds, it is imperative to take a closer

look at the requirements for a wireless testbed. In fact, several research groups

in academia and industry have shown keen interest in building their own testbeds

for validating results. Therefore, it is worthwhile for the large community dealing

with various aspects of wireless networks, comprising of researchers, application

developers, and administrators to develop a better understanding of the challenges

underlying the design of a versatile mobile wireless network testbed.

One of the foremost steps in setting up a wireless testbed is choosing the ap-

propriate hardware that has favorable cost and performance tradeoff. Some of the

key components required to build a mobile wireless testbed are: (i) the basic hard-

ware platform which could be a desktop PC, a laptop, any other small form-factor

PC, or some other device, such as a Linksys WRT54GS wireless router that runs a

standard OS like Linux; (ii) wireless interface cards that give right degree of con-

trol in terms of adjusting different configurable parameters; (iii) external antennas

(omni-directional or directional); (iv) other accessories, like RF signal attenuators,

RF cables, steering device for directional antennas, battery packs; (v) platform for

introducing mobility, which could be anything from cars, paid volunteers, to mo-

bile robots capable of carrying payloads. Any of these components can either be
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custom-made or commercial off-the-shelf products. Per node cost against the flexi-

bility of operation is usually the guiding factor. For example, commercial wireless

cards often provide limited configurability. It may not be possible to finely con-

figure transmit power or reception sensitivity. It is therefore a challenging task to

choose the right set of hardware for putting together a wireless testbed node.

The management of a testbed begins with the initial setup - hardware/software

configuration and deployment of the nodes, and continues through the entire life-

time of the testbed in terms of monitoring the status of each node and link in the

testbed, thereby keeping the testbed operational most of the time. The initial phase

of management involves finding suitable locations for placing each node so that a

true multi-hop network could be created. Thereafter monitoring the conditions of

a testbed, often spread over a large geographical area, requires a visualization tool

enabling remote monitoring through constant feedback on various node parameters,

and changing wireless link conditions. This information could be useful in remotely

restarting nodes that may have crashed during experiments, or for re-adjusting node

positions for achieving desired link conditions. Often a difficult problem is to iden-

tify a set of parameters, like CPU activity, link Signal-to-Noise (SNR) ratio, etc. that

should be monitored. The values of these parameters could be fed to the monitor-

ing agent on a central controller, thus enabling remote administration and running

of the testbed. For testbeds with node mobility, another key requirement for 24x7

autonomous operations of the testbed is the self-recharging capability.

Building testbeds that could be shared by multiple users is receiving significant

attention in the network research community. The wired network research has been

spurred by the development of the shared testbeds, like Emulab [EMU] and Plan-

etLab [PACR02]. Resource sharing in wired network testbed involves allocating a

set of nodes from a pool to individual experiments (Emulab), or to multiplex sev-

eral experiments on each node (PlanetLab). However, it is not possible to borrow
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this paradigm unmodified for wireless testbed sharing among multiple users. Since

wireless channel is a shared resource, it must be ensured that multiple experiments

conducted on a testbed are isolated in the spatial, frequency, or temporal domains.

Having built a testbed, the next most important thing is the ability to use the

testbed for experimentation. One can break up the process of executing an exper-

iment successfully into two parts: experiment execution with flexibility for fine-

grained control, and experiment analysis. Experiment control involves several

steps, which we are going to describe in further detail. First, configuring topol-

ogy involves placing the nodes in such a way that each node-pair satisfies some

link property, like SNR or delivery rate. The difficult problem is that given a large

number of nodes it is a tedious effort to determine the correct location of nodes that

satisfies all the constraints. It is also not clear whether it is possible to come up with

a completely declarative way of topology configuration, where a user specifies all

the constraints, while locations of the nodes are automatically computed based on

a priori measurements on the testbed. Second step is configuring the applications

to run for an experiment. This involves setting up the traffic generators and traffic

sinks, and can be done in two ways: a user can write her own applications, or a

library of applications could be provided from which the user chooses appropriate

applications. This could be useful in reducing the set-up overhead of an experi-

ment. Third, a user should be able to configure node mobility by specifying the

new locations of the nodes at specific times. Node movements must be triggered

appropriately to reach the locations at fixed times. Fourth, the user must be given

privileged access to a node to allow changing node/card configurations, as well as,

to let her install kernel modifications implementing the protocol under test. Un-

privileged access to users makes it necessary to be able to restore vanilla conditions

once the experiment is completed. In addition, it is important to save the different
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configurations the user has applied for an experiment because reloading the config-

urations could make re-running the experiment faster. The next step in experiment

control is providing the user with ways to fine-tune an experiment by observing the

results during execution. If one can start, stop and pause experiments, and mod-

ify parameters on the fly, it could potentially reduce experimentation time. Lastly,

debugging any wireless protocol on a testbed involves all the known difficulties of

distributed debugging. Hence having facilities for isolating bugs in protocol im-

plementations could be an additional advantage in experimentation on a wireless

testbed.

The experiment analysis part depends on accurate collection of the packet traces

so that the packet dynamics during an experiment can be easily reconstructed, and

studied offline. The first step is trace collection, which means recording the packets

that are exchanged among the nodes. The standard technique for capturing packets

is to use network sniffing tools, such as tcpdump or ethereal. However, these tools

are not capable of capturing link-level packet dynamics, like link-layer retransmis-

sions. In wireless networks, RF sniffing tools are used. Many commercial cards

provide RF sniffing capability as an additional feature, called the monitor mode. In

the monitor mode, a wireless NIC can capture all link-level transmissions including

802.11 headers, and 802.11 control frames. In a distributed environment, multi-

ple monitor nodes are needed to completely cover the entire transmission domain

of the nodes. There are two ways to set up the monitoring facility of a wireless

testbed. One approach is to keep the monitor nodes separate from the experiment

nodes. The advantage is that control and management of the monitor nodes is iso-

lated from the testbed nodes; but placement of the monitor nodes must be carefully

planned to ensure complete coverage of the transmission space. Alternatively, each

testbed node can also perform the monitoring functionalities and sniff the packets

in its neighborhood. In this case, each node must be equipped with at least two
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wireless cards, assuming one card is being used for the experiment. Designing the

monitoring facility is an important criteria for a useful wireless testbed. Next, it

is required to aggregate the traces to build one consolidated trace that depicts the

dynamics of the network. Traces from all nodes must be collected on a central node

and merged based on timestamp. This entails that all nodes are time synchronized

at the start of the experiment. Also, same packets could be collected by multiple

nodes. These packets must be culled to get a clean trace of the packet dynamics.

Finally, visualization of the collected trace constitutes an important part of analy-

sis. Visualization must show the transition of packets from each node with respect

to time. Visualization could be offline, or in real-time as the experiment is pro-

gressing. For real-time monitoring the collected traces must be transported to the

controller node that must perform the parse, collate and display operations in an

efficient manner taking into consideration the real-time constraints. Another ele-

ment in packet trace collection and analysis is filtering of packets that are collected

in order to reduce the amount of trace collected on each node. With user-defined

filters, it could be possible to collect only the packets pertinent to an experiment.

This is analogous to collection of application, routing or MAC layer traces in ns-2

simulator. In real-time visualization of traces this could be very useful in reducing

the amount of data that needs to be collected and processed at the controller.

An important question to ask is the applicability of a testbed. As we will see

later in Chapter 2 there are several testbeds that have been designed with very spe-

cific goals in mind. It is worthwhile to invest some thought while designing a

testbed such that it is applicable in as large a set of experiments as possible. While

designing a shared testbed the goal is to incorporate facility for conducting diverse

experiments, and protocol scenarios. Experiments could be live testing, emulation,

or simulation. Apart from letting users run real implementations of protocols, an-

other interesting mode of experimentation is hybrid simulation. Here, some layers
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of the protocol stack in a simulator are replaced with real hardware. For example,

the link, MAC and physical layer in simulator could be replaced by real hardware,

while the routing, transport, and application layers are kept intact. In order to ac-

commodate diverse protocols, requiring changes at different layers in the stack, it

should be able to modify each layer. Usually the MAC layer implementation is part

of the wireless card firmware, and no interface are exposed to modify it. However,

depending on such requirements, testbeds could be designed using Software de-

fined Radio (SDR) which lets you modify the MAC layer. Similarly, it could also

be useful to be able to support different physical layer technologies, like GPRS, 3G,

UWB, 802.11, or a mix of them in the testbed.

Last, but not the least, accurate repeatability on a testbed in an uncontrolled en-

vironment is hard to achieve because the external factors, like fading, attenuation,

presence of other interfering source are always changing. In order to achieve re-

peatability, without sacrificing reality completely, it is possible to create controlled

environments for the testbed by placing it in anechoic chambers and introduce in-

terference in a regulated manner, or use RF cables shielding to prevent external

interference. There is always the tradeoff between testbed realism and repeatabil-

ity. An advantage of repeatability is that it could provide a reference platform for

similar experiments.

1.3 Thesis Proposal: A Reconfigurable Multi-hop

Mobile Wireless Testbed

In this proposal, we address some of the key inadequacies of existing simulation

tools and wireless network research testbeds by developing a miniaturized mobile

multi-hop wireless network testbed called MiNT. MiNT serves as a platform for
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evaluating mobile wireless network protocols and their implementations. Like a

generic wireless network testbed, MiNT consists of a set of wireless network nodes

that communicate over one or multiple hops with one another using wireless net-

work interfaces. A key feature of MiNT is that it dramatically reduces the physical

space requirement for a wireless testbed while providing the fidelity of experiment-

ing on a large-scale testbed. For example, using MiNT it is possible to set up an

IEEE 802.11b-based 3-hop wireless network with up to 12 nodes in a 11 ft by 14 ft

space. This space reduction is achieved by attenuating the radio signals on the trans-

mitter and the receiver. Through this miniaturization it is possible to substantially

reduce set-up, fine-tuning, and management efforts required for a wireless network

testbed. Additionally, attenuation on the transmitters reduces the interference of the

testbed with the production wireless networks operating in its vicinity.

MiNT is also a hybrid testbed platform that enables one to run ns-2 simulations

with its link, MAC and physical layers replaced by real hardware and driver im-

plementations. The large number of wireless network protocols and traffic models

already coded for ns-2 can thus be directly used on MiNT. MiNT allows unmodified

ns-2 scripts to be executed on a set of physical nodes. Since the effects of radio sig-

nal propagation, like multi-path fading and interference, are better captured while

executing simulations in the hybrid mode, it produces much more realistic results

for simulation experiments.

The main contributions out of this research are,

• We present the architecture and implementation of a miniaturized wireless

network testbed, that features mobile multi-hop ad hoc networking within

a space that is order of magnitude less compared to full-scale testbeds.

The node mobility infrastructure requires no manual configuration in (a)

node movement control, (b) node position tracking and (c) node recharging,

thereby significantly reducing testbed setup and administration cost. We also
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verify the fidelity of the miniaturization approach and point out its limitations

through extensive experimentation on an operational MiNT prototype.

• We have developed one of the first hybrid simulation platforms that can run

unmodified ns-2 simulations with its link, MAC and physical layers replaced

by real components.

• The testbed offers one of the most advanced management interfaces among

all existing wireless protocol simulation systems. This interface, called

MOVIE, is able to provide a detailed real-time view of the system config-

uration, network traffic load distribution, node/link liveliness, and evolution

of protocol-specific states. In addition, MOVIE provides users the flexibility

to dynamically steer the direction of a simulation run (including reversing the

execution) by inspecting protocol states and modifying protocol parameters,

network configurations, and traffic loads accordingly.

1.4 Dissertation Outline

The rest of the report is organized as follows. First, in chapter 2 we survey several

testbeds that are built so far with a focus on their effectiveness as a comprehensive

wireless network testbed platform. Then in chapter 3 we present detailed system

architecture of MiNT with an emphasis on the hardware components and techniques

applied. In chapter 4 we present the design and implementation of all the software

tools that are used in MiNT. In chapter 5, we have evaluated different aspects related

to MiNT, like the fidelity of the miniaturization approach, the scalability of the

testbed, effectiveness of hybrid simulation, as well as, presented the results of a case

study on a wireless protocol, called ATP [Kar03] that demonstrates the applicability

of MiNT. Finally, we summarize and conclude in chapter 6.



Chapter 2

Related Work

The background for this thesis has spanned several areas, starting from earlier ef-

forts in building wireless testbeds to object tracking techniques in a dynamic en-

vironment; from existing tools for network management to tools for conducting

experiments on a wireless testbed. In this chapter we present a survey of some of

the work that is most relevant to the different components used in the design of

MiNT.

2.1 Wireless Network Testbeds

A number of wireless testbeds have been built so far. Some of them have been

full-scale outdoor or indoor deployments that are additionally used for experimen-

tal purposes. Design goal for some of the other testbeds have been to reduce the

space required for setting up a testbed without sacrificing the fundamental features

of an actual wireless testbed. In this section we present a critical view on these

testbeds, that we group in two major categories: Full-scale Testbeds and Miniatur-

ized Testbeds. In addition to these, there are some testbeds for which prototypes

13
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are not yet in place (circa Dec, 2006), but has a novel approach in its design. We

highlight the strengths and weaknesses of these testbeds, showing the techniques

used to address core testbed design issues, and also point to some of the limitations.

2.1.1 Full-scale Testbeds

We first look at some of the wide area wireless deployments. Some of these testbeds

were designed for specific projects. So the testbeds were tailored accordingly to sat-

isfy the requirements of those projects. Recently there have been a growing interest

in designing shared testbeds that could be used by a larger research community,

and not confined to a project. In this subsection we will look at these two types of

testbeds that are designed with a different set of users in mind.

CMU MONARCH group pioneered in building one of the first wireless testbeds

for academic research when they set up a full-scale testbed for implementing and

evaluating the Dynamic Source Routing (DSR) protocol developed by the same

group. This testbed at CMU1 was primarily designed for testing and evaluating

DSR on a realistic setting apart from the simulations [MBJ99]. Since the primary

goal of this testbed was to evaluate DSR protocol performance, the testbed is de-

signed with 5 mobile nodes and 2 static nodes spread over an area of 700 meter

by 300 meter. The mobile nodes are implemented with rented cars carrying lap-

tops acting as mobile ad hoc nodes. For management of these nodes spread over a

wide area this testbed had implemented a visualization daemon, that provides SNR

information of each link. This testbed did not try to resolve the questions raised

in relation to resource sharing among multiple users, efficient experiment control,

or wide applicability. The purpose was to execute a specific application and study

its behavior. It took around 7 months to set up this testbed, which points to the

1henceforth we refer to this testbed as CMU-DSR
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difficulties of setting up a similar full-scale wireless testbed.

Ad Hoc Protocol Evaluation Testbed (APE) designed at Uppsala University is

used for comparative study of different ad hoc routing protocols [LLN+02]. Similar

to any other multi-hop wireless testbed, APE also uses a large space for placing the

nodes. Node placements must be done manually, but management is aided by APE-

view that is a log driven animation tool showing node positions and connectivity.

This is the method for topology generation for experiments. Mobility in APE is

introduced by providing explicit movement directions to volunteers carrying the

laptops. This is a choreographed mode of mobility management. Since this is not a

shared testbed, APE does not focus on usage across diverse experiments.

In order to facilitate mesh networking research, the Roofnet project at MIT came

up with this testbed with nodes spread across volunteers’ rooftops in Cambridge

city [Cha02]. The testbed is also used to provide broadband Internet access to

the users. Roofnet is deployed for conducting 802.11 measurement experiments

to understand the nature of large-scale wireless networks. Since these nodes are

static nodes, there is no flexibility of creating new topologies (changing transmit

power may generate new topology by breaking some links), or introducing mobility.

Roofnet is a network more useful for studying network characteristics rather than

for experimenting with diverse application scenarios.

At Rice University researchers have built a testbed using Transit Access Points

(TAPs) in order to explore the design of a high-speed wireless backbone [KSK03].

The core building block in the testbed, Transit Access Points, is a node equipped

with multiple radios and antennas, which can be used in unison for spectrally effi-

cient links at very high data rates. Lack of commercially available hardware with

the specific requirements has prompted custom design of TAP hardware. This

makes the TAP hardware expensive. Although the testbed is useful for specific

types of experiments tuned to the project goals, it is not suitable for use across wide
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variety of experiments.

2.1.2 Shared Testbeds

In tune with the growing needs for scale and realism by a wider community of

wireless researchers, the following are some of the large-scale open platforms that

are designed for shared usage.

2.1.2.1 Mobile Emulab

Mobile Emulab developed at Utah University is arguably the first mobile wireless

testbed for shared usage. It is open for public use remotely, and is a good exam-

ple of shared wireless testbed. Mobile Emulab is developed as an extension to

Netbed [WLG02], which itself is a shared network emulation platform mainly for

wired networks. The current version of the testbed, as per the webpage, consists

of 6 motes and 6 Stargates mounted separately on robots (Acroname Garcia), be-

sides 25 static Motes that are placed on the walls and ceilings in the testbed arena.

The mobile wireless node component of the Mobile Emulab testbed comprises of

a Intel Stargate, which is a single board computer, that hosts a 900 MHz Mica2

mote, and the combination is mounted on the Acroname Garcia robot for mobility.

Six overhead cameras in the testbed arena provides vision-based tracking. The 25

static motes are also provided for giving additional flexibility with configuration

and management. Besides these key components, there are additional features like

live feed of the robot motion using webcams, integration with the prior Emulab en-

vironment, that provides a well-tested infrastructure for experimentation and data

gathering from the testbed. The management of the testbed is still a pain-point be-

cause the charging of the batteries must be done manually. Hence the testbed is

operated only on fixed working hours, and not on a 24x7 basis.
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There are two challenging problems that were addressed in order to get this

testbed operational. First, each node had to be tracked in the testbed arena. Since the

Mobile Emulab uses a vision based tracking system consisting of ceiling mounted

cameras, they faced a problem of inaccurate dewarping after the image is captured.

They have devised a clever scheme of dewarping which gives them a locationing

accuracy within an error of 1 cm. Secondly, since the testbed physical movement of

the robots, it was necessary to devise a technique to allow collision free movement

of the robots in the testbed arena. They use the proximity sensor on the Garcia

robots to detect presence of any obstacles, and triggers corrective steps to avoid a

collision. If there is a static obstacle the wireless node computes a path around the

obstacle to reach its destination.

Though quite attractive in its design, and arguably the first mobile wireless

testbed, the Mobile Emulab suffers from some drawbacks. Besides the fact that

it is operational only for a fixed duration of time on weekdays, it also involves reg-

ular management tasks, like recharging the batteries. At one time only a single

experiment can be run on this testbed since there is no space sharing. It is admit-

tedly a difficult problem to make a wireless testbed truly sharable simultaneously

among multiple users. Despite its few limitations, Mobile Emulab is an operational

testbed for use by external users.

2.1.2.2 ORBIT

Open Access Research Testbed for Next-Generation Wireless Networks (ORBIT)

is developed at Rutgers University [RSO+05]. ORBIT has built an indoor radio grid

of 400 nodes in a 20 ft by 20 ft space (Figure 2.1). It is planned to be extended over

an outdoor field trial network consisting of both high-speed cellular and 802.11x
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Figure 2.1: The large indoor grid at the ORBIT testbed comprising 400 nodes, as

shown in the ORBIT webpage.

wireless access. Each testbed node in ORBIT, shown as the ceiling-mounted yel-

low box in Figure 2.1, is custom-designed in order to provide several useful fea-

tures, like remote monitoring of the nodes. Each node is static, and thereby it is

easy to connect them to a central node using a wired interface making management

functionalities easier and reliable. Mobility of each node in ORBIT is emulated

through a separate mobility server, that transfers the state of a mobile node from

one node in the grid to another. The topology generation is another problem due to

the static nature of the grid. This has been circumvented by selectively switching

some nodes on and off, as well, as through injection of noise to create links with

different capacities [KGS06].

ORBIT provides an extensive infrastructure for running experiments, and sub-

sequently storing the results of an experiment. Users must login remotely to the

ORBIT testbed, and execute experiments. Some of its salient features are: (i) A

host of traffic generators that can be used by a user to configure her experiment, (ii)

Measurement Library, which minimizes coding effort of an user who can use pre-

defined functions, (iii) well designed storage mechanism of all the results from an
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Figure 2.2: A birds eye view of the WHYNET testbed and its components.

experiment in a database that can be accessed through standard SQL queries. How-

ever, ORBIT does not appear to provide unprivileged access to a node, which may

make it difficult to test kernel level protocol modifications on ORBIT. Nevertheless,

ORBIT is a useful platform for testing protocols involving several technologies, like

Wi-fi, high-speed cellular, Zigbee, Bluetooth.

2.1.2.3 WHYNET

WHYNET is a collaborative project among several university campuses which aims

to come up with a shared testbed spread over geographically separated resources,

and encompassing several wireless technologies, as depicted in the figure 2.2 taken

from the WHYNET webpage. It is planned to be a scalable testbed for next-

generation mobile wireless networking technologies [TBG+05]. Till Dec 2006,

the WHYNET project has not opened up its resources for external use. However,
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it is planned to be usable remotely by external users. There are several interest-

ing features that WHYNET has incorporated. One of them is the hybrid emulation

framework with two distinct capabilities: (i) seamlessly integrate emulation, sim-

ulation and physical testbeds for greater scalability or realism [ZJB06]; (ii) high-

fidelity radio and channel emulation in real time. A number of simulators, like

ns-2 [NS-], GloMoSim [ZBG98] are also part of the testbed, besides several other

tools, like sQualNet, SCTP, UWB, that have been developed for evaluating other

wireless technologies.

2.1.3 Miniaturized Testbeds

Although large testbeds are more easily acceptable in the research community due

to its similarity to full-scale deployments, such testbeds can often fall short in terms

of manageability and flexibility of experimentation. In this subsection, we will look

at some of the testbeds that tried to overcome the large space requirement, at the

same time capturing the realism of full-scale testbeds as best as possible.

The testbed at Sarnoff Research center (which we refer to as Sarnoff-tbd) was

the first attempt at experimenting with the idea of attenuating radio signals for set-

ting up a wireless environment in a limited space. Kaba and Raichle at Sarnoff de-

signed this testbed on a desktop by restricting and controlling radio ranges and prop-

agation effects of the PC cards [KR01]. Through this testbed the authors demon-

strate the idea of using fixed radio signal attenuators to reduce the radio range of

wireless cards. In order to control the external effects on signal propagation, the

testbed uses coaxial cables that can pass the radio signals from one card to another

unaffected by external interference. The PC cards are shielded with custom-made

copper shields to prevent leakage power from the internal antennas.

The use of programmable attenuators found its way in another project, called
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RAMON at Florida State University. In this setup the experimenters aimed at eval-

uating the performance of mobile network protocols when the hosts are moving at

high speed. RAMON is a rapid mobility network emulator [HH02] designed using

mostly off-the-shelf devices. The novelty in the design of this emulator is in its

use of programmable attenuators to vary the signal strength observed by a wireless

station, which acts as the mobile host. Since lower signal strength indicates greater

distance from the source (base station), therefore RAMON varies attenuation level

on each node to emulate different mobility patterns.

EWANT is an Emulated Ad Hoc Network Testbed [SBBD03] built by Sanghani

et al. with a goal of providing a low cost environment for wireless research. Sim-

ilar to the Sarnoff testbed they also used attenuators and shielding to shrink the

radio ranges. The mobility of the nodes is emulated without physically moving the

nodes. It is emulated by connecting 1 PC card to 4 external antennas through 1:4

RF multiplexer, and switching the transmission through these antennas.

A novel approach in creating an environment for wireless experimentation is

tried by Glenn Judd and Peter Steenkiste in their physical emulation platform ap-

proach [JP03]. They use digital emulation of signal propagation using Field Pro-

grammable Gate Arrays (FPGA). The aim is to have repeatable experiments, while

preserving the realism of the MAC and physical layer. To achieve this, they use

coaxial cables to feed the signal from a RF device to the emulator. The emula-

tor controls the emulation of signal propagation by taking into account the impact

of external factors, like multi-path interference, through use of signal propagation

models. The main drawback of this approach is that external factors are still mod-

eled, and is not truly real.
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2.1.4 Notable Work-in-Progress

In this section, we will touch upon some of the testbeds for wireless experimentation

that are still under development (circa Dec 2006). However, the uniqueness in

their design, and the potential impact that these testbeds might have on the wireless

research community as a whole makes each of them interesting to be included.

The Kansei testbed is a sensor network testbed developed at Ohio State Univer-

sity [EARN06]. It also reduces the transmit power through software control to scale

down the size of the testbed. The Kansei testbed has been used to demonstrate an

important result by Naik et al. [NEwZA06] that comments on the fidelity of scal-

ing up/down from a full scale testbed. The claim is that the relationship between a

link set and its scaled version is a probabilistic one. This implies that at different

scales through repeated experimentation the behavior of the protocol will be statis-

tically equivalent. However, an important empirical observation is that for a link set

with only high and low received signal strength links the variation in path losses on

different instances of the network have minimal impact.

The Illinois Wireless Wind Tunnel (iWWT) is a proposed testbed at UIUC

[VBV+05]. The aim of this testbed is also to build a scaled version of a wireless

testbed. But an important objective that iWWT targets is repeatability of wireless

experiments. Repeatability for almost all known testbeds is difficult because of

uncontrolled external factors. To alleviate the problem of external noise, iWWT

proposes to build an anechoic chamber that will house the wireless nodes. Thus the

entire radio environment will be under the control of the experimenters.

The Heterogeneous Wireless Access Network Research Testbed (HWANRT)

project is focusing on exploiting heterogeneous wireless networks [HWA]. It ex-

plores the use of software defined radios (SDRs) for tiding over the differences in

the use of radio spectrum by multitude of wireless devices. It is supported by Vanu

Inc., one of the leaders in SDRs in this effort. In addition to it, the project also looks
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at different network, transport and application layer protocols for bringing together

heterogeneous wireless components to interact seamlessly in an integrated ad hoc

network.

The National Radio Network Research Testbed (NRNRT) is an initiative to sup-

port research and development of new radio devices, services, and architectures

and to provide a facility for researchers to test and evaluate their systems [NRN].

The NRNRT consists of (1) a field deployed measurement and evaluation system

for long-term radio frequency data collection, and experimental facility for testing

and evaluating new radios, (2) an accurate emulation/simulation system incorporat-

ing long-term field measurement for evaluating new wireless network architectures,

policies, and network protocols, and (3) experiments with innovative wireless net-

works that integrate analysis, emulation/simulation, and field measurements.

2.1.5 Discussion

So far we have highlighted the salient features of most of the current wireless net-

work testbeds. In Table 2.1, we present a characterization of these testbeds with

respect to how efficient each of these testbeds are in terms of addressing the chal-

lenges in each of the key testbed features. The characterization is based on the

available literature of the testbeds. In our view, large physical space requirement not

only makes management of a testbed difficult, but also adds to its operational cost.

This is true for most of the full-scale testbeds, like CMU-DSR, APE, RoofNet, TAP.

We judged some testbeds, like Netbed, WHYNET and ORBIT to be high in cost,

but the expenditure is justified keeping in mind the wide usage those are aiming.

In evaluating a testbed on experimental control aspect, we emphasize the flexibility

of new topology generation and introduction of mobility. Testbeds, like Roofnet,

based on fixed nodes are less flexible compared to others on this count. A shared
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Testbed Cost Mgmt Share Expt Expt Repeat- Applic-

Control Analysis ability ations

CMU-DSR X X X
√ √

X X

APE X X X
√ √

X X

ORBIT X X
√ √ √

X
√

WHYNET X X
√ √ √

X
√

Mobile Emulab X X
√ √

X X
√

Roofnet
√

X X X
√

X X

TAP X X X X - X X

Sarnoff-tbd
√ √

X X -
√

X

EWANT
√ √

X X - X X

CMU-emu X
√

X X -
√

X

Table 2.1: Comparison of various wireless network testbeds in terms of the de-

sirable features. An “X” denotes that the testbed has inadequate support for the

feature and a “
√

” denotes that it addresses that feature. In all other cases, the

presence/absence of the feature is not known.
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testbed must be rich in its applicability to diverse scenarios, like live experimenta-

tion, emulation or simulation. WHYNET, ORBIT and Netbed propose to address a

truly diverse set of scenarios compared to others.

2.2 Support for Physical Node Mobility

Enabling physical node mobility in a testbed leads to several features that must

be addressed, like introduction of a mobility platform, tracking the mobile nodes,

allowing for their collision free movement, as well as keeping these battery pow-

ered nodes operational for the longest possible time. Different testbeds that allow

physical mobility has attempted different techniques to address this challenge. This

section reviews these methods for the different issues.

2.2.1 Mobility Platform

One of the earliest wireless testbeds to introduce node mobility is the mobile wire-

less testbed built at CMU for testing DSR protocol [MBJ99]. Each mobile node

in CMU-DSR is a car carrying a laptop. Similar to this, the APE testbed at Up-

psala University [LLN+02] choreographs the movements of volunteers who carry

the mobile devices around the campus. These techniques of introducing mobility

are closely dependent on human interaction. Ideally, the node movements should

be remotely controlled and their mobility fully automated. In this paper, we take

the approach of introducing mobility using remotely controlled robots.

The ORBIT testbed at Rutgers [RSO+05] introduces virtual mobility using fixed

wireless nodes placed in an 8x8 grid. To simulate mobility of a virtual node, its state

is transferred from one physical node to another thus simulating the effect of node

movement. This technique, however, leads to discretized mobility over the grid
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nodes. In contrast, our testbed is completely based on mobile robots and physical

mobility.

Mobile Emulab [EMU] uses 4 Acroname Garcia robots for mobility. These

robotic platforms cost over $1000 a piece, as opposed to our improvised robotic

platform based on Roomba robotic vacuum cleaners ($249 a piece) [Rooa]. More-

over, Netbed’s robots must be manually taken to their charging bases every 2-3

hours for recharge. Roomba comes with an auto-charging feature, that makes our

mobile testbed truly autonomous. We also leverage on the design technique of us-

ing attenuators to miniaturize the testbed [DRScC05]. This makes the arena of

operation smaller thus requiring smaller number of overhead cameras to track the

nodes.

The mobility of the nodes in the first prototype of MiNT [DRScC05] was cap-

tured by mounting the external antennas (connected to the radio interface) on top

of remotely controlled LEGO Mindstorm robots. This design restricts the mobil-

ity region of a node to a fixed space around its corresponding desktop PC, acting

as the wireless device. The antenna cable length becomes the limiting factor in

determining the space of operation for a node. In contrast, currently MiNT uses

a design of mobile nodes that moves around the whole testbed arena without any

limitation [DRK+06].

A key aspect in node mobility is to allow collision-free movement of the

robots, which requires path and motion planning of the robots. Existing litera-

ture [CLH+05] has explored robot motion planning for various complex scenarios.

Since our testbed offers a much controlled environment, we explore a heuristic that

is lightweight, and computationally efficient. In contrast to the motion planning al-

gorithm used in Mobile Emulab, since the Roombas do not have object sensor, we

have built the intelligence to detect obstacles on the path into the trajectory planning

procedure by using the tracking subsystem.
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Robotic platforms for introducing mobility of nodes is not uncommon even in

other areas of research. One of them is Caltech Multi-Vehicle Wireless Testbed

[CDvG+02] used for studying decentralized control methodologies for multiple ve-

hicle coordination and formation stabilization. They have custom designed their

robotic platform, and pattern based tracking mechanism. In another similar project

at UIUC, Scott and Kumar have built a wireless testbed based on toy cars. Track-

ing the cars inside the arena is based on matching colored patches on the cars that

are grabbed periodically using an overhead camera. We use similar color based

mapping techniques as these work. But we have simplified and scaled the overall

tracking system using off-the-shelf webcams, and multiple colors. We are avoiding

any form of pattern recognition techniques which makes detection of the nodes fast

and reliable.

2.2.2 Node Tracking

Associated with mobility feature is the use of a tracking system for accurately de-

termining the position and orientation of each node. There are various systems that

use vision-based tracking system to track mobile nodes in different environments.

Here, we briefly discuss three tracking systems that are most similar to ours. Gra-

ham and Kumar [GK03] use ceiling-mounted cameras and colored patterns on toy

cars to track them. They use 8 colors and an error-correcting 3x2 colored pattern

to track the cars. Their system is designed to track up to 22 mobile nodes and

is able to uniquely identify nodes as well as provide their position and orientation.

Cremean et al. [CDvG+02] use ceiling-mounted monochromatic camera and binary

(black/white) patterns to compute the position and orientation of the nodes. Con-

current to this work, Johnson et al. [WLG02] have also implemented a centralized

tracking system that uses ceiling mounted camera and color patterns to determine

the position and orientation of the mobile nodes in their wireless testbed. Their
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tracking system does not uniquely identify each tracked node, instead locality and

motion pattern information is used to determine the identity of nodes.

Simplicity and cost of construction are the main differentiators of our track-

ing system. Use of off-the-shelf consumer webcams and standard APIs makes

our tracking system inexpensive and easily portable. Additionally, miniaturization

makes our tracking system more scalable. We also do not need any frame-grabber

cards. Thus no specialized equipment/API needs to be procured and set up to install

our tracking system.

2.3 Testbed Control and Management

Several software tools are designed for use in MiNT. These tools span different

areas, starting from visualization interfaces to tools for better management of an

experiment. This section focuses on these tools categorized according to their ap-

plications.

2.3.1 Real-time Monitor and Control Interfaces

Any testbed requires a visualization tool to study the dynamics of the experiments.

CMU testbed [MBJ99] uses a graphical interface that displays the position of the

nodes, the link characteristics, route changes for DSR protocol, and throughput in-

formation. Similarly, the MIT Roofnet [Cha02] also has an online map of the link

characteristics among all the nodes in the testbed. It refreshes the link characteris-

tics periodically. Similarly, Kurkowski et al. [KCC05] extended NAM to develop a

tool called iNSpect, which adds features needed to study the mobility of nodes. Our

extension of NAM (MOVIE) goes much beyond iNSpect in making NAM display
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real time as well as showing important events related to wireless protocol evalua-

tion, like route changes, link characteristics, and protocol-specific attributes. Addi-

tionally, MOVIE supports advanced control features such as experiment breakpoint

based on specified events, and rollback of experiments.

Among commercially available tools for management of experiments Labview

from national Instruments [Lab] is well-known. Besides this, there are several tools

providing interfaces for wireless network management for enterprises. Any of them

could definitely be used for managing a wireless testbed, but would be an expensive

choice.

2.3.2 Emulation Platforms

The usefulness of seamlessly migrating from simulation environment to field testing

using actual implementation has been noted earlier. ns-2 itself provides a network

emulation facility where real applications can interact with simulated ones [Fal99].

The nsclick project [NJG02] attempts to bridge the gap between simulation and

deployment by presenting a set-up where the code written for ns-2 simulation can

be used with minimal change in real implementation. Saha et al. has also built a

system, called PRAN which allows reuse simulation models directly for physical

implementations of routing protocols [STP+05]. We do not set reuse of code as the

main goal. Instead, we want to complement simulation tools by building valida-

tion platform that is based on these tools, but adds to the accuracy of the results of

experiments performed using them. We achieve this by enabling unmodified sim-

ulation scripts to be executed on the testbed nodes with MAC and physical layer

functionalities from physical world instead of using simulation models.
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2.3.3 Application Debugging

There is a large body of literature covering different methodologies aimed at un-

covering faults in systems. The idea of injecting faults into a system to validate

its capabilities under exceptional conditions has been a well-known technique in

hardware testing. This idea is used to test software systems, where we inject errors

into the system in a program-driven manner and observe the response of the system

to such exceptions. This technique is called Software Implemented Fault Injection

(SWIFI). One of the early works in SWIFI has lead to the tool, called FIAT [SL88].

It is a tool that added functions to test trigger conditions and inject faults at compile

time. Thus FIAT could trigger a fault on a condition such as the arrival of a message

from a particular node. In another tool, called Xception [CMS95], Carreira et al.

used the advanced debugging and performance monitoring features existing in most

of the modern processors to inject faults by software, and to monitor the activation

of the faults and their impact on the target system behavior. An environment for

testing distributed real time systems was created in the DOCTOR project [HRS95].

It supported injection of memory, CPU, and communication faults. Stott et al. de-

veloped an integrated fault injection environment, called NFTAPE [SFKI00] which

provides mechanism to inject different fault models into the test system. All of

these systems aim at testing a wide range of faulty behavior of the system. Since

we are mainly interested in detecting network-related faults in MiNT, therefore, it

makes our fault injection and analysis tool compact, flexible and easy-to-learn.

In our fault injection and analysis tool we use “active probing” of the network

traffic. The idea of active probing, as introduced by Comer and Lin [CL94] has been

used with several extensions. Their idea was extended with the flexibility for ma-

nipulating messages in Orchestra [DJM96]. Orchestra uses a fault injection layer

between the layer under test and the layer below on the network stack. The user

has to program the fault injection experiment using Tcl and C. When generating
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test cases from the protocol specifications, it is more intuitive to use a declarative

language for generating the fault injection experiments because just like the design

specifications, the fault scenario description can be kept separate from the specifics

of implementation. Therefore, our approach is to present a domain specific lan-

guage with a set of primitives that should be able to represent all network faults,

as well as, perform analysis at run time. An approach similar to active probing has

also been in used in the Piranha project [Gri99], where packet headers are corrupted

systematically and protocol’s response is noted. A work by Tsai and Singh [TS00]

aimed at fault testing for Windows NT platform also uses the approach of intercep-

tion of library calls and corruption of library call parameters. Both the works seem

limited to only packet corruption/modification. We intend to address all possible

faults that can arise in the network environment, hence packet modification is one

of the different primitives we support in our fault specification language.

Emulating network interactions is also a widely used technique to observe the

protocol behavior. Delayline [DG94] provides a configurable environment for em-

ulating wide-area network over local-area network by specifying topologies with

different link delays. Dummynet [Riz97] simulates different features of the net-

work, like finite queue size, limited bandwidth and delays. It is used to test real

protocol implementations. However, these tools lack the ability for packet manipu-

lation.



Chapter 3

System Architecture of MiNT

Setting up a multi-hop wireless network is a grueling exercise mainly because deter-

mining suitable positions for placing a node that satisfies the multi-hopping require-

ment is a non-trivial task. Nodes must be placed such that there are pairs of nodes

which are (a) in communication range of each other, (b) in interference range of

each other, and (c) outside interference range of each other. This constitutes a typi-

cal multi-hop wireless network setup. Usually the communication distance between

a pair of wireless nodes operating in 2.4 GHz frequency range and using off-the-

shelf IEEE 802.11b wireless NICs is around 200 feet; the interference range for the

same would be about 500 feet depending on the sensitivity thresholds set on differ-

ent types of adapters. Even these distances vary dramatically due to several external

factors, like multi-path interference, noise in the channel. Hence larger the physical

distance among the nodes, more tedious and time-consuming is the task of setting

up a multi-hop topology. Several research projects, like CMU-DSR [MBJ99] and

MIT-Roofnet [Cha02], has reported experiences of setting up a multi-hop wireless

testbed that has taken significant amount of time and labor. We assess that the

large geographical distance to be one of the key pain-points in setting up a typical

32
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wireless testbed. We propose a technique to alleviate the difficulty of setting up a

multi-hop wireless testbed by reducing the space of operation of multiple nodes at

the same time maintaining the properties of multi-hopping.

While configuring a topology, it is common to introduce incremental change to

node positions. Also, mobility of nodes is required for an experiment. In order to

study the aspects of node mobility in a full-fledged testbed, the nodes must often

traverse large distances. This has prompted use of cars to drive a laptop around

campus, as in CMU-DSR, or employ volunteers to carry mobile devices in an or-

chestrated manner, as in APE at Uppsala University [LLN+02]. Scaling down the

space of operation gives us the opportunity to apply mobile robots to introduce

remotely controlled mobility for the nodes. Mobility of the nodes with minimal

direct human/administrator involvement is a desirable feature in a wireless testbed

with large number of nodes. In our design of MiNT nodes we have kept in mind

the need to take care of mobility in a manner that requires least intervention.

Our design of MiNT centers around two key ideas discussed. This chapter

presents the design of a MiNT node and the overall reconfigurable multi-hop wire-

less testbed. We present the design of individual components in the testbed, with

specific details on building a mobile wireless node, and other associated aspects,

like tracking of a node in the testbed and issues related to keeping the testbed oper-

ational over long periods of time.

3.1 Building Blocks of MiNT

MiNT comprises of a collection of core testbed nodes managed remotely by a con-

troller node. There is a tracking server setup aiding in the process of determining

exact location of a node in the testbed. The overall interaction of the hardware and

software components in MiNT is explained in this section. The components and
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Figure 3.1: Overall MiNT architecture. The control daemon running on the control

server collects inputs from the tracking server and the user, and controls the move-

ment of mobile robots. It also includes the MOVIE interface for monitoring and

control. Each testbed node corresponds to a Roomba robot and has a node daemon

running on it, which communicates directly with the control daemon over a ded-

icated wireless control channel that is non-interfering with the channels used for

the experiments. The core testbed nodes communicate with the peers using wire-

less NICs that are connected to low-gain antennas through radio signal attenuators.

The vision-based tracking server periodically captures images of testbed nodes, and

processes them to derive the location of each testbed node.
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their relationship is shown in the schematic in Figure 3.1.

3.1.1 Hardware Components in MiNT

A mobile node comprises of a wireless computing device and a mobile robot for

physical movement. In MiNT, the wireless device is a RouterBoard (RB-230), that

is a low-power battery-operated small form-factor computing board. Each Router-

Board allows attaching 4 mini-PCI IEEE 802.11 a/b/g cards, that makes it possible

to support multi-radio experiments [RC05]. For the wireless cards used in the ex-

periments, a radio signal attenuator is inserted between the wireless interface and its

antenna to shrink the signal coverage area and thereby the physical space require-

ment. The mobile robot is an inexpensive off-the-shelf robotic vacuum cleaner

from iRobot, called Roomba. Necessary modifications to the Roomba are made

to allow (i) the Roomba movements to be controlled from the wireless comput-

ing board mounted on it, and (ii) automatic recharging of a mobile node when the

batteries drain out with suitable customization of the vendor supplied docking sta-

tion, that has a self-homing feature to bring a Roomba back for recharging when in

low-charge state. The mobile node design is discussed in detail in Section 3.2.

The control server is a PC equipped with multiple wireless network interfaces.

In our current prototype the control server uses 3 wireless NICs. All control traf-

fic is transported over an IEEE 802.11g channel and thus does not interfere with

IEEE 802.11a channels, which are used in actual experiments. Multiple NICs al-

low the flexibility to scale the testbed to an increasing number of testbed nodes as

the control traffic grows with additional nodes in the testbed.

The tracking server is used for providing accurate position and orientation in-

formation of a node in the testbed as it changes its location in the testbed. The

tracking server can be a cluster of PCs depending on the number of cameras used.
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Figure 3.2: MiNT prototype with 12 mobile nodes and charging stations (top left

corner of the image).

The tracking system periodically sends snapshots of the entire testbed captured us-

ing a (3x2) grid of commodity web cameras, and uses them for node identification

and locationing. Smaller physical space requirement plays to our advantage in re-

ducing the number of cameras required to cover the entire space.

Figure 3.2 shows a prototype of MiNT consisting of 12 nodes, with charging

stations visible at the top left corner of the image.

3.1.2 Software Components in MiNT

The key software components in MiNT are: (a) the control daemon running on

the central control server, (b) the node daemon residing on each testbed node, and

(c) the network monitor and control interface called MOVIE (Mint cOntrol and

Visualization InterfacE).

The control daemon runs on the control server. It collects position updates of

the core testbed nodes from the tracking server, as well as, event traces from the

nodes used in an experiment, which it uses to update the visualization interface. It
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also communicates user-issued control commands, regarding node position or con-

figuration changes, to individual node daemons. Based on the position commands

issued by the control daemon the node daemons trigger the movement of mobile

robots. Because all event messages from the testbed nodes are routed through the

control server, the control daemon maintains a complete log of the activities in the

testbed.

The node daemons on the testbed nodes communicate with the central control

daemon over an IEEE 802.11g channel that is fixed at start-up time. The messages

being communicated are either movement commands from the central control dae-

mon, or simulation events reported by testbed nodes back to the central control

server. Other programs running on testbed nodes, for example, an ns-2 simulator,

a TCP sender, or an RF monitoring agent, rely on the node daemon for any com-

munication they may require with the central control server. For example, critical

events in the event trace that an ns-2 simulation run generates are passed in real

time through the node daemon to the controller node for display.

MOVIE provides a comprehensive monitor and control interface that offers real-

time visibility into the testbed activity and supports full interactive control over

testbed configuration and hybrid simulation runs. MOVIE is derived from Network

Animator (NAM), a well-known off-line visualization tool for ns-2 traces. Several

enhancements in the form of powerful features for real-time monitoring and con-

trolling simulation runs and for interactive debugging of simulation results, such as

protocol-specific breakpoints and simulation state rollback, has been introduced.

3.2 Core Node Design

MiNT is a reconfigurable multi-hop wireless network testbed that is possible to set

up in a very small space. The key principles that guided the design of a core testbed
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node in MiNT are (a) miniaturization of the area of installation of a multi-node

multi-hop wireless testbed, (b) remotely controlled mobility of the nodes to allow

easy reconfigurability of topology in the testbed, (c) and last, but not the least, the

emphasis on building a low-cost testbed from commodity off-the-shelf equipments

as much as possible.

3.2.1 Miniaturization

A typical wireless testbed spans a large geographical area because radio signals

from transmitters used in commodity cards can be usually received over a large

radius of the order of few hundred meters. This is contrary to our goal of setting

up a testbed in a limited space because every node within the area will be in single

hop communication range of each other. To achieve our goal of miniaturization, it

is imperative to restrict the radio signals from a sender before it reaches the receiver

within a small area. This enables us to set up a pair of nodes in a manner such that

even though the nodes are separated by a small distance the signal from the sender

can be prevented from reaching the receiver. This is the key to establishing multiple

collision domains in a much smaller area compared to an unmodified wireless set

up.

The simplest technique for limiting radio signal propagation distance is to re-

duce the transmit power on the wireless interface card. One can use a laptop or a

PDA with a commercially available PC card that allows setting the transmit power

to different values, like 100 mW, 50 mW, 10 mW, 5 mW, 1 mW. Since we are aim-

ing to minimize the space as much as possible, we tried using a Cisco Aironet 350

series card that allows us to reduce the transmit power of the card to the smallest

value possible in a commercially available card (1mW). However, experiments re-

vealed that this transmit power setting is still too high to carry the radio signal across



3. SYSTEM ARCHITECTURE OF MINT 39

two mid-sized rooms. This defeats our goal of miniaturizing the testbed to the de-

sired scale of a couple of feet of communication distance between two neighboring

nodes.

The alternative choice is the use of radio signal attenuators. Radio signal at-

tenuators are available in two different types, viz. fixed signal attenuators and pro-

grammable attenuators. However, there is a stark price difference between the two:

the fixed signal attenuators are priced in tens of dollars, as opposed to the pro-

grammable attenuators which are usually close to $1000 a piece. Therefore, we

choose fixed signal attenuators to design a low-cost core node1. We determine the

extent of attenuation (dB rating) based on the desired range of signal propagation.

Use of attenuator, which is external to a wireless card, requires the use of an ex-

ternal antenna. The attenuator is connected between the PC card and the external

antenna using RF cables with suitable connectors. The problem with this approach

is that most commercially available PC cards come equipped with an internal an-

tenna. The internal antenna is not fully disabled upon attaching an external antenna,

and radiates significant RF energy, thus defeating the goal of miniaturization.

There are two ways to overcome this problem: one is to desolder the internal

antenna2. The other option is to use a card that does not have an internal antenna. It

is hard to find a PC card without internal antenna; however, miniPCI and PCI cards

are available which do not have an internal antenna. Since the computing platform

of our choice, RB-230, provides only 1 PCI slot, we opt for miniPCI cards. Multiple

miniPCI wireless NICs can be attached on RB-230 making it possible to use a node

for experiments requiring multiple interfaces [RC05].

Another step aiding in attenuating the signal propagation is the use of low-gain

antennas. Since we are using external antenna, we opt for antennas with a gain of 2

1For a detailed specification of equipments used in a MiNT prototype refer to Appendix A.1
2This method is reported to be applied by the wireless Emulab testbed [JSF+06]
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dBi.

3.2.2 Node Mobility

The unrestricted node mobility in MiNT must be implemented using mobile robots.

Key determinants for our choice of robots are: (a) low-price, (b) minimal assem-

bly, and (c) remote controllability. Hobby robots provide an inexpensive option,

but require extensive assembly. Robots typically used in many commercial and

robotics applications, like AmigoBots [Ami], PatrolBots or Acroname Garcia [Acr]

robots, are very high priced, often going into thousands of dollar for each piece.

Hence, instead of choosing one of these standard robotic platforms, for building

the MiNT nodes we choose a Roomba robotic vacuum cleaner from IRobot as the

mobility platform for a wireless node. Roomba is a consumer grade product with a

retail price of $249 at the time of our purchase. Use of Roomba greatly reduces the

cost per-node in MiNT.

Designed primarily to be a vacuum cleaner, Roomba does not have an open

API for controlling its movements. We overcome this limitation through a clever

use of its IR-based remote control facility. More specifically, we achieve arbitrary

Roomba movement using two primitives: (1) move the mobile robot forward, and

(2) turn the robot clockwise or anticlockwise. A Roomba can be instructed to per-

form these primitives through a out-of-the-box remote controller that comes with

the Roomba. We learn Roomba’s remote control codes using a programmable re-

mote controller called Spitfire [Spi]. The central control server moves a testbed

node by sending a movement command to the testbed node’s RouterBoard, which

relays a corresponding command to Spitfire over serial port. Eventually Spitfire

issues the associated infrared code to instruct the testbed node’s Roomba to move

accordingly.

Roomba does not expose any API for controlling its movement. The only option
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for controlling Roomba’s movement remotely is its remote controller. Therefore,

to allow a user to control Roomba movement programmatically and accurately, we

improvise on the use of the remote controller. We use Spitfire, a universal learning

remote controller, to learn the IR codes associated with each button press on the

Roomba remote controller. Spitfire provides a GUI to perform this step manually

with clear instructions on how to learn the codes. Once this step is completed, the

Spitfire acts as a remote controller for the Roomba, and can issue the same move-

ment commands as the factory-made remote controller. The code for each button

is stored as part of a library in an EEPROM in the Spitfire. Although it is possible

to program each Spitfire manually using the GUI, this process introduces slight de-

viation in the codes that are stored in the EEPROMs, resulting in deviations in the

movement of the Roomba for the same command issued from different Spitfires. In

order to eliminate this inconsistency, we program one Spitfire manually, and copy

the contents of this Spitfire’s EEPROM on to the EEPROMs of other Spitfires using

a hardware chip programmer3.

Spitfire is fitted with a serial interface using which it can connect to an external

controller, in our case the RouterBoard. It also exposes APIs for issuing commands

over the serial interface, accessing the codewords stored in the code library stored in

the EEPROM. The Roomba controller agent on each node uses these Spitfire APIs

to initialize the serial interface, and issues the IR signals for steering the Roomba.

The distance traversed or the rotation by a Roomba is in multiples of the unit dis-

tance/angle traversed in response to 1 move signal.
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Figure 3.3: A MiNT node comprises of a RouterBoard (RB-230) powered by an

external laptop battery, and a Roomba robotic vacuum cleaner whose movement is

controlled by a Spitfire Universal Remote Controller. The RouterBoard is equipped

with 4 wireless NICs each connected to a separate omni-directional antenna via a

radio signal attenuator.
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3.2.3 A Complete MiNT Node

The complete design of a MiNT node involves setting up a full-fledged computing

platform that can act as the wireless node. Since the entire setup must be mobile,

and be mountable on a Roomba, therefore it is imperative to choose a platform

that has a small form-factor, is as light weight as possible, and must be energy

efficient to run on battery power for a considerably long duration. Additionally,

custom made platforms are avoided keeping in mind the cost constraint involved.

After considering several options, we choose RouterBoard’s RB-230 board as the

hardware platform for the wireless networking device. RB-230 is a small-form-

factor PC with a 266 MHz processor and runs on an external laptop battery. It also

comes with a PCI extension board (RB-14), which allows us to attach 4 Atheors-

based 802.11 a/b/g mini-PCI cards. As discussed earlier, each of these cards is

connected to a 2 dBi external antenna through a 22 dB attenuator. This adds a total

of 44 dB attenuation on the signal path from transmitter to receiver and thus makes

it possible to deploy a 12-node MiNT prototype within a space of 132.75 inches X

168.75 inches (Figure 3.2). In addition to the fixed attenuation, the transmit power

on the mini-PCI cards can also be altered to provide additional flexibility in tuning

inter-node signal-to-noise ratio.

Figure 3.3 shows the current MiNT node prototype. There are two shelves

mounted on the Roomba. The laptop battery and the Spitfire universal remote con-

troller sit on the lower tier, while the RouterBoard based wireless networking device

is on the top tier. The four external antennas are mounted on poles located at four

corners. Detailed instructions for assembling a MiNT node is provided in Appendix

A.2.
3this requires opening the Spitfire box, identifying the EEPROM chip storing the data, and using

the chip programmer to program that chip.



3. SYSTEM ARCHITECTURE OF MINT 44

3.3 Tracking System

The tracking system in MiNT is necessary to maintain the location and orienta-

tion information of node in real time, and display it through the GUI. To enable

autonomous robot movement, the central control daemon must keep track of the

current position and orientation of each testbed node. One of the simple ways to

track position of a node is by using the odometry data that gives a feedback about

the distance traversed by a node from a starting point, and the angle rotated with

respect to a fixed direction. However, Roomba provides no API for collecting these

data. Since we calibrate each forward and rotate step in the beginning, it can also

be used to compute the odometry data using the move commands that are issued.

But mechanical inaccuracies, difference in floor friction can lead to errors. Hence

a more accurate locationing system for the nodes is required. One option is to use

RF/ultrasound-based indoor local positioning systems such as Cricket [PCB00].

However, this option increases the per node cost, and introduces additional RF inter-

ference. Therefore, we choose an optical or vision-based position/orientation track-

ing system that only requires off-the-shelf webcams and color patches mounted

on testbed nodes. The resulting tracking system is able to uniquely identify each

testbed node, and pinpoint its (X, Y) position and orientation (θ).

Compared to general object tracking, the object tracking problem in MiNT is

less complicated because of several simplifications that is possible specifically for

MiNT. First, the lighting condition in the room housing the MiNT testbed does

not change much. Consequently, it is not necessary to dynamically account for

fluctuation in lighting condition once the color profiles have been calibrated for

the initial lighting condition. Secondly, color patterns used to identify individual

testbed nodes can be chosen such that they are different from the background color,

in this case the floor’s color. By including multiple colors in the patterns used
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Figure 3.4: The 8 different colors used in MiNT.

to identify individual testbed nodes, this scheme can easily support hundreds of

testbed nodes. Thirdly, placement of webcams that periodically take snapshots of

the testbed nodes does not change once it is mounted.

Identification of colors uniquely is at the heart of the tracking mechanism in

MiNT. We use the HSV (Hue, Saturation, Value) space to represent colors because

the distribution of colors is more uniform, and the Hue and Saturation components

are orthogonal to the Value (or brightness) component. Given images captured in

the testbed arena, we compute the HSV profile of a number of colors, and eventually

arrive at 8 colors that can be clearly distinguished based on at least one of the H, S,

or V components. Figure 3.4 shows the 8 colors used in MiNT. Because the HSV

profile for the same color may change substantially from one camera to another

(due to difference in CCDs of each camera), we profile each camera separately.

In the choice of the camera used in the tracking system, we are driven by the cost

effectiveness. It is possible to use high resolution cameras with wide angle lens that

has a large viewport, but comes at a cost in order of thousand of dollars. Similarly,

for high frame rates, it is possible to use hardware decoders that can provide frames

of the order of 30 frames per second. Since we have an application that can work
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Figure 3.5: The color patch on a node has a unique head and tail patch on all nodes.

The vector from the centroid of the tail patch to the centroid of the head patch is

used to determine the Roomba’s direction, thereby computing a node’s orientation

in the testbed arena. The node location and identification are done using the center

ID patches.

with a lower resolution image and lower frame rate, we identified cheaper options

that cater to the requirement. Commercial off-the-shelf webcams has a low resolu-

tion of 320x240 but comes at a price of $112 (retail price for Logitech Quickcam

Pro 4000).

3.3.1 Tracking Mechanism

MiNT employs a vision-based tracking system where it must identify combinations

of colors to uniquely identify a node and determine its location and orientation.

MiNT associates a four-color pattern with each testbed node, as shown in Figure

3.5. The head and tail color patches are the same for all testbed nodes. So only the

center patch, which consists of two colors, are used in node identification. In partic-

ular, the location of a testbed node is the centroid of the ID patch. The orientation

of a testbed node is determined based on its direction, which in turn corresponds to

the vector connecting the centroid of the tail patch to that of the head patch. Using
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the same colors for the head and tail patches introduces redundancies that can guard

against noises and simplifies the determination of robot orientation. There are two

main steps in identification and locationing of a node: (a) finding the presence of

a color patch in the snapshot image, (b) reducing parsing of each image by using

inter-frame coherence in the images captured.

The color recognition algorithm used in MiNT is extremely simple and thus

light-weight, and can do away with several image processing techniques, like edge

detection. Once an image is grabbed, the pixels are scanned one by one in the scan

line order. If a pixel of a known color is detected, then the pixels in its immediate

1-pixel neighborhood are checked for similarity and the color block is grown. It

is possible to detect multiple blobs of the same color in an image captured by a

webcam. This can happen if multiple nodes are captured by 1 webcam, in which

case the head and tail patches will lead to blobs of same color. It can also be due

to noise which can result because the color patch might fade in portions and lead to

disconnected blobs for a single patch. The noisy case is handled by using a merging

technique. For all the blobs of same color, it is checked if the centroids are within

a distance less than a pre-defined merge threshold. The merge threshold is chosen

such that it will guard against merging same color patches from different nodes, but

will be able to compose all the blobs from the same patch into a single blob. The

blob merging technique is aimed at making the system robust against noises that is

quite common in such a system.

An optimization to improve the frame rate is to reduce the scanning of entire

image for every cycle. Since we are only interested in the pixels corresponding

to a node, the aim is to start the search in a captured image for a node where we

most expect it in the next frame. In other words, with a knowledge of the state of

the node between two frames, it is possible to exploit the location information to

start the search closer to the node’s current location. A bounding box is computed
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Figure 3.6: The schematic shows the placement of multiple cameras such that

viewport overlaps. The overlapped areas are such that at any point in time a node

must be fully covered by a camera; none of the camera captures a partial image of

the node.

beyond which the node will not have moved, given the inter frame latency, and the

speed of the node. This bounding box directs the search for the node in subsequent

frames, thus reducing detection time.

It must be noted that a single webcam cannot cover the entire testbed arena.

Multiple webcams are used to fully cover the entire arena for the testbed. A node

naturally moves from the viewport of one camera to another camera. We noted

that the complexity of the tracking algorithm increases unnecessarily if a node is

partially covered by 2 different webcams. A simple design choice in the layout of

the cameras takes care of this problem. The cameras are mounted such that the view

ports of adjacent cameras overlap, and the overlapped area is large enough to cover

a node completely. Hence a node is always fully covered by a camera; none of the

camera captures partial view of the node, as shown in Figure 3.6.

3.3.2 Implementation and Tracking Setup

The implementation of the tracking system in MiNT splits the entire process in two

stages, first each webcam captures an image of the space it is covering, and next, the
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Figure 3.7: The schematic shows the components of the tracking system. The we-

bcam servers collect images captured by each webcam, and feeds to the integrator.

The integrator translates the node positions to global coordinates and sends it to the

control node for display in GUI.

partial images of the testbed from each camera is merged so that the coordinates of

a node is presented to the control server in global scale. There is a webcam server

for capturing image from each webcam, and the integrator server sitting in between

the webcam servers and the control server merges the data collected by the webcam

server to generate the coordinates in the unified 2-dimensional space representing

the testbed arena. Figure 3.7 shows the components in the tracking system. Multiple

instances of the webcam server can be executed on a single machine along with the

integrator. With increasing number of webcam servers running on the same node,

the frames per second that is reported reduces due to the increasing processing

overhead. In order to scale the system it is possible to split the entire system into a

cluster of PCs.

In order to get the image that each webcam captures we need image grabbing

APIs. Usually for most of these webcams image capture APIs are available in

Windows platform. However, APIs on Windows platform suffers from poor scal-

ing, and gives a very low frame rate even when just 2 webcams are plugged in.
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VideoForWindows API is unable to instantiate more than one webcam on a single

machine, whereas DirectShow API gives a low frame rate of 1.5 fps with only 2

webcams. After exploring several choices as above, we have chosen Camstream

application [Cam] on Linux. Camstream uses Video4Linux [Vid] as the image

grabbing API. Incorporating our tracking algorithm into Camstream allows us to

capture frames at 15 fps with 6 webcams connected to a single Intel based machine

with a 2.8 GHz processor. In our implementation, Video4Linux or v4l library calls

are used by a user level application for grabbing the image from a webcam. The

specific driver used for the Logitech Quickcam Pro 4000 webcams is Philips USB

Webcam (PWC) driver.

The integrator application simply listens for a connection request from the con-

trol node. Once it connects to the control node, it establishes connection to the

webcam servers, and starts collecting data periodically. It merges the data to com-

pute the global coordinates and sends it back to the control node. When a node is

transitioning from one webcams coverage area to another, the integrator commu-

nicates the change to both the webcams. This allows the webcam which is seeing

the node for the first time to use the bounding box information provided by the

integrator.

In our current prototype setup 6 webcams are mounted at a height of about

9.1 ft with each covering a floor space of 87 inches X 66 inches, with the total

testbed arena of 132.75 inches X 168.75 inches. Each webcam has a resolution of

320 x 240, thereby each pixel corresponds to 0.075 square inch area. Factors that

affect the accuracy of MiNT’s color-based position/orientation tracking algorithm

are the size of each color patch, the number of distinct colors used, the stability

of lighting condition, optical noise in the patch boundaries, which might distort

centroid computation. Given the patch size and the camera resolution used in the

current MiNT prototype, a 1-pixel recognition error could potentially translate to
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0.27 inch in location error, and 2.2 degrees in orientation.

3.4 Trajectory Determination

Unrestricted mobility of the nodes introduces the challenge of careful planning of

node movement such that obstacles in the form of other nodes in a node’s path is

avoided during its displacement. MiNT’s trajectory computation is based on a static

trajectory planning algorithm, which computes a robot’s path assuming the world

is static, and a dynamic collision avoidance algorithm, which detects and resolves

collision by fine-tuning pre-computed trajectories.

Given the current position and the target destination of a testbed node (TN), the

control server takes a snapshot of the positions of other testbed nodes and treats

them as obstacles in the calculation of the TN’s trajectory. The static trajectory

planning algorithm first checks if there is a direct path between the TN’s current

position and its destination. If such path does not exist, the algorithm identifies the

obstacle closest to the source position, and finds a set of intermediate points that

lie on the line which passes through the obstacle and is perpendicular to the line

adjoining the source and destination and have a direct path to both the source and

destination. If no such intermediate points exist, the algorithm finds a random in-

termediate point that is δ steps away from the obstacle closest to the source and is

directly connected to the source, and repeats the algorithm from this new interme-

diate point as if it is a new source. The algorithm is shown in Algorithm 1.

In Figure 3.8, node N1 is set to move from Ainitial to Afinal. However, N2, N3

and N4 block the direct path between Ainitial and Afinal. The trajectory planning al-

gorithm first figures out that N3 is the obstacle closest to Ainitial, and then computes

the intermediate points P1, P2, ..., P6 to search for 2-hop paths to Afinal. Because

the paths L1 and L2 are partially blocked, the algorithm eventually chooses path L3,
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Algorithm 1 Node Trajectory Determination
for (∀ nodes marked for mobility) do

obstacle← Nearest obstacle on direct path between Ainitial and Afinal

if (obstacle == 0) then

// There is a direct path to the destination

Generate Roomba moves

else

Determine intermediate points (P1, P2, ..., Pn) on lines ⊥ or at angle θ to

direct path passing through the nearest obstacle;

Check for direct path between Ainitial and any of (P1, P2, ..., Pn) ;

Check for direct path between any of (P1, P2, ..., Pn) and Afinal ;

if (∃ 2-hop direct path via Pi) then

Generate Roomba moves from Ainitial to Pi ;

Generate Roomba moves from Pi to Afinal ;

else

if (∃ direct path from Ainitial to some Pi) then

Generate Roomba moves from Ainitial to Pi ;

else

Move δ steps in a random direction away from nearest obstacle;

end if

end if

end if

end for

which passes through the intermediate point P3.

In addition to static trajectory planning, MiNT also requires a dynamic collision
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Figure 3.8: Finding the trajectory from N1’s current position Ainitial to Afinal.

As nodes N2, N3 and N4 block the direct path, the algorithm tries to identify an

alternate 2-hop path to move N1 from its current source to its destination.

avoidance algorithm because testbed nodes could be moving and the robot move-

ment is not perfect. Given a snapshot of the testbed at 15 fps in the current proto-

type, MiNT performs a proximity check for each testbed node. If any two nodes are

closer than a threshold distance, both of them stop, a new path is re-computed for

each of them, and the algorithm moves them on their new trajectory one by one. In

the event that two nodes indeed collide with each other, the algorithm again detects

it through a proximity check and stops the nodes immediately. In this case, the

algorithm also recomputes a new path for each of the two nodes, and moves them

one by one.

One problem with Roomba is that its movement is not very accurate, which

could also lead to dynamic collision. Its forward movement is 5 inches per

step, and the pivot movement varies from 4 to 5 degrees per step. Furthermore,

a Roomba only allows three types of movement: forward, clockwise turn and

counter-clockwise turn. Hence backward movement is implemented by a turn of

180 degree followed by forward motion. The inaccuracies in Roomba movement
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necessitate constant correction. Additionally, MiNT’s object tracking errors also

contribute to position inaccuracy. Hence, after applying every sequence of 5 move

commands on a testbed node, its trajectory is re-computed till it reaches the desti-

nation point.

3.5 24x7 Autonomous Operation

A key challenge in the design of MiNT is how to render the testbed self-manageable

and providing uninterrupted 24x7 operation. This ideally means that a node should

be self-administered with respect to routine operations, like recharging the batter-

ies for the nodes; and it should be self-recovering in the face of faults. Since each

testbed node is battery powered, the batteries must be recharged periodically. Usu-

ally battery charging is a manual process that requires the administrator to take

discharged nodes to charging stations [JSF+06]. In contrast, MiNT supports auto-

matic recharging of node batteries and imposes zero manual charging overhead. In a

setup involving large number of nodes, and executing any user code and unchecked

kernel modules, node crashes are not unusual. A node must respond to this by

detecting the node failure and be able to recover to a clean state. In this section,

we present the auto-recharging mechanism, the residual battery capacity estima-

tion mechanism, and the re-charge scheduling policy. Finally, we discuss how we

recover from node crashes resulting from bugs in protocols under test.

3.5.1 Auto-recharge Mechanism

Roomba provides a docking station to charge its batteries. The Roomba docking

station emits an IR beacon that is received by a Roomba over a distance of around

5 ft. When a Roomba’s battery power drops below a threshold, it starts looking

for a beacon emitted by the docking station and uses the signal to home into the
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Figure 3.9: The auto-charging circuit for charging the wireless node battery when

the mobile node docks itself into the docking station for recharging.

docking station for recharge. Unfortunately, Roomba’s built-in battery cannot be

used to directly power the RouterBoard. Hence, we use a separate universal laptop

battery to power the RouterBoard. To recharge the RouterBoard battery along with

the Roomba battery, we connect the RouterBoard battery to the charging tip of

the Roomba battery as shown in Figure 3.9. This allows both the batteries to be

charged simultaneously from the same docking station. A diode connected between

the Roomba battery and the RouterBoard battery ensures that the batteries are not

drained by each other.

In order To keep the testbed running on a 24x7 basis, nodes with low residual

charge must be scheduled for recharge on every charging cycle. Unfortunately,

neither the Roomba nor the RouterBoard battery provide any API for probing the

residual battery capacity. Hence the residual charge on a testbed node is estimated

based on profiling of the batteries and the node’s usage 4.

For each node, the residual charge on the Roomba’s internal battery and the

RouterBoard’s battery are estimated separately. Specifically, the residual charge on

Roomba’s internal battery is estimated using the equation:

Rroomba = Iroomba −Nroomba ∗ Uroomba (3.1)
4With the introduction of Roomba Serial Command Interface since October 2005, it is now

possible to retrieve the status of the Roomba battery and have a more accurate measure of residual

charge (discussed later in section 3.7
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where Rroomba and Iroomba are the residual and the initial charge on Roomba’s

battery. Nroomba is the number of movements performed by Roomba, and Uroomba

is the energy consumed per movement. Although, a Roomba battery drains even

when Roomba is not moving, the drainage is negligible.

Similarly, the residual charge on RouterBoard’s battery is estimated as:

Rboard = Iboard − Tboard ∗ Uboard −Ndisk ∗ Udisk −Npacket ∗ Upacket (3.2)

Here, Rboard and Iboard are the residual and the initial charge on RouterBoard’s

battery. Tboard is the amount of time RouterBoard has been on, and Uboard is its idle

power consumption per unit time. Ndisk and Udisk are the number of hard disk oper-

ations performed by the RouterBoard and the energy consumed per disk operation

respectively. Finally, Npacket and Upacket are the number of packets sent/received by

the RouterBoard and the energy consumed per network operation respectively. The

energy consumed by each IR transmission is negligible.

A node cannot be used for experimentation while it is being charged. However

for 24x7 operation a set of nodes must be operational at all times. Hence, a set

of spare nodes are provisioned in the testbed. Specifically, the testbed uses n + m

nodes, where n nodes are used in the experiments at any time while m nodes are

being recharged. If c is the average charging time for a node and d is its average

discharging time, then by maintaining (m > n ∗ c/d) spare nodes, the testbed

can be run without any downtime. Neither the Roomba’s nor the RouterBoard’s

battery suffer from any memory effect due to incomplete charge/discharge cycles.

Therefore, the actual re-charge scheduling algorithm is straightforward: upon every

re-charge cycle, just dock the m least charged nodes out of n+m testbed nodes for

re-charging.



3. SYSTEM ARCHITECTURE OF MINT 57

3.5.2 Node Crash Recovery

The other aspect of 24x7 operation is how to deal with node crashes due to bugs

in the kernel modules. We utilize the 2 hardware watchdog controllers that are

equipped on each RouterBoard. A software daemon periodically writes certain

bytes to an I/O port indicating to the watchdog controller that the node is still alive.

In the event of a node crash, the control daemon stops writing to the I/O port,

and the control server detects it after a timeout. The controller then automatically

reboots the node. To ensure that a reboot restores the original kernel image, no

user-specified module is loaded at boot-time. This way a crashed node can always

automatically recover within a fixed time.

3.6 Limitations of MiNT

The key feature of a MiNT testbed is its ability to limit the signal propagation range

between two nodes to within a few feet through use of attenuators. However, the

approach of miniaturization through attenuation has certain limitations. This sec-

tion presents a word of caution on the pitfalls of MiNT and explains their potential

impact on the final outcome of experiments.

The most prominent change in MiNT from a typical full-scale testbed is that in

MiNT the radio signals are attenuated at the transmitter and the receiver ends. As

we are not placing the core nodes in a noise-free environment, the nodes operate in

presence of external noise sources, like microwave oven, cordless phones, and other

interfering channels. The RF signals from these noise sources are attenuated only at

the receivers, leading to a phenomenon of selective attenuation. The noise sources

are less attenuated than the real transmissions. Additionally thermal noise at the

receiver is unattenuated because it does not go through the receiver antenna. Since

the attenuation of signal is more than that of the noise, one might suspect that the
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Figure 3.10: Representation of relationship between signal quality and distance.

Adding radio signal attenuators pushes the X-axis of the graph up, effectively re-

ducing the extent of signal quality variation. At attenuation A1, the graph is con-

fined to region R1. In region R1, the signal becomes 0 when the distance between

transmitter and receiver is greater than D1.

signal-to-noise ratio (SNR) for a link in MiNT is lower than that of an unattenuated

testbed. However, this effect can be overcome by reducing either the attenuation

level or the distance between the nodes.

In MiNT, since the nodes (and hence the antennas) are placed in close proximity

of each other, the receiver is in the near-field zone of the sender. This is unlike a

full-scale testbed, where the nodes are typically placed far from each other, hence

the receiver is usually in the far-field zone of the sender. This difference is inherent

to MiNT approach due to shrinking of the space.

Multi-path effects in signal propagation lead to small-scale variation in the sig-

nal strength. A qualitative representation of this variation of signal quality with

distance is shown in Fig 3.10. Between two points, say 0 and D2 there are multiple

crests and troughs in the signal quality. By adding the attenuator, we are effectively

pushing up the X-axis in this graph by the dBm value of attenuation. As a result
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of this, the number of crests and troughs between the same two points, 0 and D2,

is smaller than that of the non-attenuated case. Constructive and destructive inter-

ference resulting from the multi-path effects are dependent only on the frequency

of the signals. Hence a solution to this problem is to scale down the frequency of

the signals which would make the number of crests and troughs same. However,

changing the frequency would change the properties of the wireless medium under

test, and hence is not a viable solution. This limitation impacts the mobility-related

experiments where the extent of signal quality variation encountered by a mobile

node in MiNT will differ from that of full-scale testbed.

Finally like any other testbed, lack of control over physical parameters leads to

non-repeatability of experiments on MiNT. The inability to control external factors

affecting signal propagation is the source of this problem.

3.7 Roomba Serial Console Interface (SCI)

In a recent development (circa October 2005) Roomba manufacturer iRobot has

announced roll out of a new version of Roomba that contains an electronic and

software interface for controlling and modifying Roomba’s behavior, and remotely

monitor its sensors. This interface is known as the Roomba Serial Command In-

terface or Roomba SCI [Roob]. The SCI provides commands to control all of

Roomba’s actuators, like the motors, as well as request sensor data. Roomba SCI

simplifies several aspects in the design of MiNT, with an associated reduction in

the overall cost. In this section, we present this new programming interface for

Roomba, and how it affects the design of the individual components discussed in

the earlier sections. One needs to connect the RouterBoard serial interface to the

serial interface on the Roomba (mini-DIN connector).
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SCI simplifies the design of mobility setup that uses the universal learning re-

mote controller, Spitfire. SCI provides the API to issue the move commands directly

to the Roomba. Specifically, the API that can be used is Drive. The command takes

4 data bytes, where the first two data bytes specify the average velocity of the drive

wheels in millimeters per second (mm/s), and the next two bytes specify the radius

in millimeters at which the Roomba should turn. This command gives the com-

plete flexibility to steer a Roomba forward, turn it at any arbitrary angle, even do a

forward motion while turning, as well as do a reverse motion. Overall, use of this

API achieves two purposes: it eliminates the need for a hardware device leading to

a cost reduction of $120 per node; secondly, it opens the possibility of exploring

different velocities for node movement.

SCI could also be used in increasing the robustness of our tracking system.

There are two APIs, viz. Distance and Angle in SCI, which provides the distance the

Roomba has traversed in millimeters and the angle it has turned through since the

last call to these APIs. If rapid movements are being requested, then it is required

to make frequent calls to these APIs to get accurate values as the values are capped

at its minimum or maximum. It is also worth noting that the reported values may

be inaccurate due to floor friction variation and mechanical differences. Hence,

this can only be used to verify the results from the vision-based tracking, but not

eliminate the tracking system currently used in MiNT.

For enabling 24x7 autonomous operation we had to engineer the charging cir-

cuit on the Roomba so that the battery powering the RouterBoard is simultaneously

charged along with the Roomba battery. With the introduction of SCI, this has been

greatly simplified because two pins in the mini-DIN connector provides unregulated

power from the Roomba battery. This can now be used to power the RouterBoard,

eliminating the need for an external laptop battery. However, it should be noted that

since this is unregulated power, it is may be necessary to introduce a voltage stepper
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before it can be used for powering the RouterBoard. Since in this setup we can use

a single battery for powering the complete node, therefore it becomes simpler to

enable 24x7 operation. SCI exposes an API, named Charge which gives the current

charge of Roomba’s battery in milliamp-hours (mAh). In our case, the Roomba

battery is the node battery. Once we can get a feedback on the residual charge

it is possible to use another API, called Force-Seeking-Dock to send the node for

charging. The Force-Seeking-Dock command causes the Roomba to immediately

attempt to dock if it encounters the docking beams from a Home Base.

In summary, the opening up of the SCI APIs leads to a total savings of around

$300 per node in building a MiNT node. It also simplifies some of the steps in

building a node, like programming a Spitfire device, engineering the charging cir-

cuitry.



Chapter 4

Management and Control of MiNT:

The Tool Suite

A hardware infrastructure requires a comprehensive software tool suite to be truly

useful. For using a testbed effectively, there are several software tools that are

essential. For example, remote access to the testbed necessitates a user interface

that provides visibility of all the resources in the testbed, as well as flexibility to

control those for individual experiments. Similarly, capability to allow execution

of different experiments requires a framework to enable experiments with diverse

requirements. We have designed a set of tools to allow such functionalities in order

to make MiNT an easily usable testbed for wireless experimentation. In this chapter,

first we revisit the components of MiNT, emphasizing the software building blocks,

and how all of them fit together to form a tool suite for a wireless testbed. Detailed

description of three main software components, viz the user interface for MiNT, the

experiment execution framework used in MiNT, and a tool for efficient debugging

of protocol implementations in a distributed environment, follows later.

62
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Figure 4.1: Overall MiNT architecture. The control daemon running on the control

server collects inputs from the tracking server and the user, and controls the move-

ment of mobile robots. It also includes the MOVIE interface for monitoring and

control. Each testbed node corresponds to a Roomba robot and has a node daemon

running on it, which communicates directly with the control daemon over a ded-

icated wireless control channel that is non-interfering with the channels used for

the experiments. The core testbed nodes communicate with the peers using wire-

less NICs that are connected to low-gain antennas through radio signal attenuators.

The vision-based tracking server periodically captures images of testbed nodes, and

processes them to derive the location of each testbed node.

4.1 Software Building Blocks for MiNT

There are three main building blocks for the MiNT infrastructure, viz. the control

node, the testbed nodes, and the tracking subsystem. Each of them runs several
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software that come together to form the software setup for MiNT. Figure 4.1 high-

lights some of the important software components that are running on the control

node, each testbed node, and the tracking subsystem. In this section, we will dis-

cuss the role of each of these components, and present how they communicate with

each other.

The tracking subsystem is a relatively independent unit in the entire

MiNT setup. The main purpose of this unit is to feed the current position and

orientation information of each node moving around in the testbed, as described in

detail earlier in Section 3.3. The software component running on the tracking server

is a locationing agent that interprets the image data collected by the grid of web-

cams spread over the testbed arena to compute the coordinates of each MiNT node.

The details of how the tracking server works is previously explained in Section 3.3,

and is mentioned here for completeness.

Each MiNT node runs several software modules that help in running and con-

trolling experiments on the nodes, as well as collecting statistics for further analysis.

A node daemon runs on each node and acts as the single point of interface for each
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node. The node daemon comes up when a node is booted. Each MiNT node is con-

figured to acquire a DHCP address from a DHCP server in the testbed arena using

one of its wireless interfaces which has non-attenuated connectivity. Once there is

connectivity, the node daemon uses the preconfigured IP address of the control node

to establish connection with the control node. The node daemon stays connected to

the control server throughout, and waits for commands generated as a result of user

activities. The node daemon also opens socket connections to the simulator run-

ning on each node, and the local packet monitoring agent. The complete software

architecture for node daemon is shown in Figure 4.2.

The different messages received by the node daemon from the control server

are, Move commands for issuing the user activated move instructions coming from

MOVIE. Each move command is communicated through a serial interface to the

Roomba controller module. The Roomba controller is a serial interface to a Spitfire

device that controls the physical movement of the Roomba. The other commands

from the control node are related to simulation: it sends the simulation file name,

and the commands to control the simulation, like play, pause, stop commands for

simulation. The node daemon uses signals to control the simulation based on the

specific simulation command received from the control node.

The control node is the single point of control and information gathering for

the testbed. It collects data from, and distributes data to, three entities, the tracking

subsystem, the testbed nodes, and the user. The control node runs a control daemon

that acts as a single point of communication for all the other software modules

running on the control node, and for communicating with other modules outside.

The software design of the control daemon is shown Figure 4.3. As soon as the

controller node comes up, the control daemon establishes connection with the nodes

present in the testbed by sending a broadcast advertisement packet. It keeps sending

this packet periodically so that testbed nodes can be added any time. The control
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daemon also receives continuous feeds of the location of each node in the testbed

from the tracking subsystem.

The other important piece of software on the control node is the graphical user

interface for MiNT, called MOVIE. MOVIE provides a one-stop portal for visual-

izing all the resources present in the testbed, as well as gives the flexibility to the

user to change node configurations and control experiments. The only view of the

testbed that a remote user gets is through this interface, thus MOVIE acts as the eye

and hand of the testbed. Details of MOVIE are discussed in the Section 4.2.

The software architecture of MiNT is designed in such a way that the control

daemon and the node daemon act as the gateways for communication among the

different software entities residing at different places. All communication is done

using message passing interfaces, with different message types being used to com-

municate to different modules and trigger different events. The advantage of this
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approach is that it is relatively simple to enhance the model with new software en-

tities as and when it is required to be added either to the control node or the testbed

nodes.

4.2 MOVIE: Mint cOntrol and Visualization Inter-

facE

Existing wireless network simulators and testbeds lack capabilities for real-time

visibility into the detailed dynamics of protocols under test. When it comes to ex-

periment control, none of the commonly available tools expose sufficient interfaces

for finer control over experiment and the flexibility to steer the experiment towards

a fruitful direction. We have designed MOVIE, Mint cOntrol and Visualization In-

terfacE, to be a true “eye” and “hand” of the testbed allowing complete monitoring

and management capabilities respectively for all resources present in MiNT through

a single unified view (Figure 4.4). Besides being a network management interface,

MOVIE also provides the interface to control experiment execution. Thus, MOVIE

is an integrated network and experiment management system. It provides real-time

display of individual node positions and inter-node signal-to-noise ratios (SNRs),

protocol specific state variables, node/link liveliness, pair-wise end-to-end routes,

network traffic load distributions. In terms of management of the testbed, MOVIE

allows control over all node level parameters (viz. transmit power of a wireless

NIC, that are exposed by the card as APIs), as well as individual links (enabling

or disabling a link for communication through packet filtering). As an experiment

control interface, MOVIE allows user to manage an experiment from start to finish,

beginning with configuration of the testbed topology, followed by loading of simu-

lation scripts or protocol modules, and finally collection of the experiment results in
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Figure 4.4: MOVIE GUI acts as the front-end to the testbed, and supports all

management, control, and visualization functionalities. Each node icon represents

the actual position of a physical node in the testbed (as shown in Figure 4.7). Nodes

are physically moved by dragging the corresponding icons in the GUI. The number

on each link represent the signal quality for the link in that direction. MOVIE can

be used to set the network-wide parameters, and override them on a per-node basis.
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an online or offline manner. Combined with a real-time view of the progress of the

experiment, and the flexibility to pause simulation runs and rollback states, MOVIE

virtually allows the user to control an experiment at a much finer granularity than

previously allowed by any experiment management system. We present some of

these advanced experiment control features in Section 4.3.

4.2.1 Network Animator (NAM) Preliminaries

The graphical user interface for MiNT is derived from Network Animator (NAM)

[EHH+99]. NAM is one of the earliest network visualization tools, and is most

widely used in conjunction with the network simulator ns-2. NAM uses a Tcl/Tk

interface and is designed for animating time-indexed network simulation events

which are stored in file as output of a simulation run, or even from real net-

work traces (this requires some preprocessing). Figure 4.5 [EHH+99] shows how

NAM event file is generated. The important steps in the design of NAM is de-

termining the topology layout, followed by display of the time-indexed network

events in a manner that visualizes the progression of the protocol activity. NAM

also supports multi-resolution views into the event dynamics, as well as setting

of monitors for tracking protocol-specific states. All inputs to NAM is a list of
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Figure 4.6: The schematic shows the difference in the implementation of NAM and

MOVIE.

< attribute, value > pairs. Based on the attribute type, NAM displays differ-

ent objects, like nodes with node id and links with link characteristics. NAM also

supports some basic editing functions for scenario generation through addition of

nodes, links and protocol agents in the NAM interface; corresponding simulation

script is auto-generated.

The implementation of NAM (version 1.11) follows a very simple design, de-

picted in the block diagram of Figure 4.6. A NAM event file is generated either as

a result of a simulation run, or through pre-processing network event traces. This

trace file is read by the Network Animator as an input for displaying the progression

of events after an experiment. Current implementation of NAM does not support

an online display of events.

We have augmented NAM in several ways in order to come up with MOVIE.

First of all, we modified NAM to be able to display events in real-time. The
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events are generated at multiple nodes in the testbed and must be displayed through

MOVIE. Each testbed node feeds the data to the control daemon residing on the

control node via the node daemon in real-time. At the beginning when the control

daemon starts, it opens a pipe to write to a buffer, which is a circular buffer capable

of storing a configurable number of events. Instead of reading from a file, NAM

is modified to read from this buffer, and displays the events in real-time. There is

however a delay in the events actually happening in the testbed and those that are

shown in MOVIE because of transmission latency from the testbed nodes, and some

preprocessing involved before writing the data into the buffer. The pre-processing

involves sorting the events into a time-indexed order at the control daemon, as well

as, writing the events to a file for offline animation. Figure 4.6 shows the design

change to NAM for coming up with the real-time display feature for MOVIE.

MOVIE also enhances NAM with several features related to visualization of

statistics, management of the overall setup, and control of the experiments. Some of

these are display of link strength, routes; exposing several interfaces for extensive

control, like managing the resources through this single interface; and designing

new interfaces for controlling experiments, like breakpointing feature. These fea-

tures and their implementations are discussed in detail in the subsequent sections.

4.2.2 MOVIE Visualization Features

In order to display in real-time different entities, such as nodes, links, and routes

present in the testbed, MOVIE requires a periodic update from the testbed nodes.

The testbed nodes in turn must capture the packets exchanged in order to gather the

related data about the nodes, links and routes. In MiNT, each testbed node cap-

tures all the packet exchanges using one of the three interfaces that is not used for

experiment. This interface sniffs at the RF level all packets in its neighborhood.

An important point to note here is that, covering the entire transmission domain of
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Figure 4.7: The webcam shot of the testbed. The color patch on each node uniquely

identifies the node as well as tells its position and orientation.

all nodes requires multiple nodes to monitor the traffic [YYA04]. There are two

ways to set up the monitoring infrastructure: first approach is to let the experiment

nodes themselves perform the monitor functionalities and sniff the packets in their

respective neighborhoods; the second approach is to keep the monitor nodes and the

experiment nodes separate. The second case requires careful placement of monitor

nodes for a complete coverage of all transmissions, and is known to be a difficult

problem; on the other hand, all MiNT nodes being equipped with multiple cards,

it is possible to dedicate one card on each node for the sniffing role. The next step

is to aggregate the packets collected in order to recreate the event dynamics in the

testbed. Traces from all nodes are shipped to a central node and merged based on

timestamp [YYA04]. This entails that all monitor nodes must be time synchronized

at the start of the experiment. Same packet can appear in traces collected by multi-

ple monitor nodes. During aggregation, these copies are culled to get a unified trace

of the transmitted packets. Keeping duplicate packets however provides an useful

piece of information. It provides information about all nodes that are in the same

collision domain while a transmission is in progress.

Next we present several attributes that can be visualized in MOVIE. Each
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testbed node is represented by an icon in MOVIE. Each node icon corresponds

to the actual position and orientation of a node in the testbed arena, as shown in

Figure 4.7. The accurate node position is provided by periodic feedback from the

tracking server, and maintained on the control node. Double-clicking on a node

icon opens a window that displays various node attributes. These include network

card configuration, such as MAC address, radio channel, and BSSID. The window

further displays the residual charge on the node batteries as estimated by the algo-

rithm discussed in Section 3.5.1. Each of these are static values and maintained on

each node separately. Using SNMP queries, the values for all these parameters are

easily retrieved from each node.

Right-clicking on the node icon displays its hearing range neighbors, while left-

clicking on it displays the node’s interference-range neighbors. While setting up a

topology for a wireless experiment, an important step is to understand the interfer-

ence relationship among the neighbors. MOVIE can highlight both the communi-

cation and sense range neighbors for any specified node. Determination of hearing

range neighbors is straightforward: The chosen node sends out a broadcast ping.

All the neighbors that respond to the ping request are the hearing range neighbors

of the chosen node. Determining interference range neighbors is relatively trickier:

A node may not normally hear the transmissions from its interference range neigh-

bors, but can sense their transmission. For 802.11a transmissions at 6 Mbps, if the

transmit power of a card is increased by 2 dBm, then the sense range neighbors be-

come hearing range neighbors. Hence, in order to determine sense range neighbors

of a node, the transmission rate is set to 6 Mbps, wireless card transmit power is

increased by 2 dBm, and then a broadcast ping is sent. The nodes that respond are

the sense range neighbors for this node at the default transmission rate and transmit

power.

Several new attributes are displayed in MOVIE in addition to the ones already
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Figure 4.8: The changes in multi-hop routes are displayed in real time in MOVIE.

In the figure, the event of route switching from node 2 to node 1 is sent to the control

node, and displayed in MOVIE in real time.

present in NAM. The events in NAM are displayed based on a attribute list that is

predefined. The new types and the attributes are added to this file, and are parsed

with the same parsing engine as used by NAM. MOVIE displays link attributes, like

signal quality, error rate, and traffic load on the link. These characteristics are mea-

sured in a passive manner so that measurements in an experiment are not perturbed.

To measure the link error rate, each packet is stamped by a unique monotonically

increasing sequence number. On reception of a significantly large number of pack-

ets, the number of lost packets is computed. This value is updated periodically on

each node giving a measure of the loss rate on a specific link.

Display of multi-hop routes helps in understanding the routing dynamics during
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an experiment. Protocol debugging can be much simplified through visualization

of multi-hop routes discovered by the routing protocol (like AODV) in use. Each

node maintains all the route table updates and periodically sends them back to the

controller node. Changes in routes are also displayed in real time through MOVIE,

as shown in Figure 4.8.

During development of new protocols, it is often necessary to view the changing

values of different protocol-specific attributes, such as TCP’s congestion window.

MOVIE can display arbitrary attribute values as long as they are exported by the

protocol developer as attribute-value pairs. For ns-2 based protocols, the attribute

can be simply exported as part of the NAM file. For real implementations, we

use the proc filesystem interface to export various attributes. For new protocols

that plan to use the MiNT infrastructure, the values can be directly written in an

attribute-value format. For older protocols, that do not log the data in the desired

format, an adapter must be installed that converts the results from the files into the

attribute-value format suitable for MOVIE. These values are then dispatched for

display to MOVIE running on the central node.

4.2.3 MOVIE Control Features

MOVIE front-end (Figure 4.4) is designed to allow users to configure the testbed on

an experiment-by-experiment basis. It provides all the necessary controls, collects

detailed information from the testbed, and gives real-time status update to the users.

Control activities of a user generate downstream data flow from MOVIE to the

nodes. Visualization functions feed data into MOVIE for display. This subsection

discusses the main control features supported by MOVIE. A discussion of other

advanced control features, like pausing experiments, and rollback of simulation

runs, are discussed in Section 4.3 after we explain the hybrid simulation technique.

One of the most important requirements for setting up the testbed is the ability to
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configure each node. For each testbed node, the user can set various configuration

parameters such as card transmit power, retry count, sensitivity threshold, and RTS

threshold. Most of these parameters are set using standard wireless card API. The

sensitivity threshold is the only one that is set by directly altering a card register.

The user is provided a list of items to set the values of the different parameters.

The control daemon then transmits each of the parameters to individual nodes. On

receiving the value of these parameters, the node daemon makes calls to the wireless

APIs to set each of these parameters.

Another key aspect in setting up an experiment is topology configuration.

MOVIE allows a user to position the nodes at desired locations in the testbed by

dragging the corresponding icons in the GUI. The movement of a node icon gener-

ates a destination point and triggers trajectory computation on the controller node

(discussed in Section 3.4). The controller node then issues move commands to the

node daemons on the corresponding nodes. The exact mechanism of how a Roomba

movement is actuated based on a user specified signal is presented in detail in Sec-

tion 3.2.2.

Given a certain placement of nodes, the node density can be altered by changing

the transmit power level of the nodes. Further fine-tuning of topology is possible

by selectively disabling individual links and routes. Links are disabled through use

of MAC filtering function that drops all packets going from a specified source to

a destination. Route disabling is done by periodically deleting the corresponding

route table entry from all the nodes along the path.

4.3 Hybrid Simulation

An important goal in designing MiNT is to make it usable for running a variety of

wireless experiments on it. A large section of wireless research till date has been
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driven by simulations. Hence our objective is to provide a software environment

that allows running these simulation experiments on MiNT with minimal modifi-

cation. The value addition that MiNT provides to a simulation experiment comes

from the use of realistic settings. For this purpose, we have developed a hybrid sim-

ulation environment that allows the execution of legacy simulation scripts, as well

as new experiments; the advantage is that the experiment is exposed to real setups

as opposed to modeled parameters. In this section, we discuss the hybrid simulation

technique, followed by its detailed implementation for a specific wireless network

simulator ns-2.

4.3.1 Hybrid Simulation Overview

The drawback of pure simulation in capturing actual behavior of protocols in a

real setting is often attributed to the lack of detailed models for the physical layer

properties, such as signal propagation and channel error characteristics. A com-

mon practice in most academic research to date is to use simplistic physical layer

models. This is one of the prime reasons for the lack of simulation fidelity. Often

coming up with a detailed model is an extremely difficult task due to the presence

of a multitude of parameters; the simulation time for an experiment also grows sig-

nificantly with increasing complexity. With growing interest in cross-layer designs

of protocols, it becomes imperative to provide accurate results at different layers in

the protocol stack. Hybrid simulation alleviates some of these problems faced by

pure simulation.

We define hybrid simulation as a technique where some layers of the simula-

tor’s protocol stack are replaced with real entities. It is well known that majority of

the inaccuracies in simulations stem from inadequate physical layer models. In our

design, we replace the link layer, the MAC layer, and the physical layer of the sim-

ulator with wireless card driver, firmware, and real wireless channel respectively.
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Figure 4.9: The diagram shows the passage of a packet from one simulated node to

another in hybrid simulation on MiNT. All event packets for other nodes generated

in ns-2 are encapsulated in a UDP packet payload and given to the wireless card

for actual transmission. The receiving node decapsulates the packet and inserts the

event into the local event queue.

The benefit of the hybrid simulation approach is that it requires minimal change to

the already existing simulation code and scripts. The same simulation experiment

can be used to obtain results in a realistic setting. The oft questioned effects of

the physical layer models in simulation are corrected through use of real wireless

channel.

We implement a hybrid simulator version of network simulator ns-2. The soft-

ware architecture of ns-2 follows the design as shown in Figure 4.9 for Node 1 and

Node 2, with each layer modeled in software. In case of standard simulation, the

simulator is usually executed on a single node (unless it is a parallel simulator), and

each node in the simulation has a virtual node id. In hybrid ns-2, each physical
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node runs one instance of the simulator, and a virtual node is mapped to one physi-

cal node. The hybrid ns-2 protocol stack maintains the same layering, but replaces

the link layer with an implementation of hybrid simulation link layer (LLEmu).

The LLEmu layer receives the ns-2 event packet from the higher network layer,

encapsulates it into a real packet and transmits it to the appropriate physical node

associated with the simulation node id. Thus, the lower layers for the real simu-

lation are now replaced with physical entities, instead of modeled entities. This

requires several changes to the ns-2 simulator. We present these implementational

changes in the following subsection.

4.3.1.1 Implementation of Hybrid Simulator

We present the challenges involved in implementing hybrid simulation capability

into a standard discrete-event simulator, and detail the techniques we use to over-

come these challenges for the ns-2 simulator.

Two key design components in a simulator are: (a) the way to model execution

logic of different entities based on either events, activities or processes, and (b) the

way the simulation time is advanced. ns-2 is a discrete event simulator, where the

execution logic is based on events, and the time is advanced at the pace of event

execution time using a global virtual clock. In hybrid simulation, all packet com-

munication is carried over real wireless medium. This leads to inconsistency be-

tween the virtual clock that determines the dispatch rate of simulation events, and

the real-world clock that determines the transmission rate of packets over actual

wireless channel. In order to overcome the timing problem associated with the use

of a virtual clock, we use system clock on all the nodes, that are synchronized at the

beginning of each experiment, to update the simulator’s virtual clock. Events are

now dispatched according to their real execution time instead of being executed as
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soon as the previous event has finished execution. We use ns-2’s RealTime Sched-

uler with the following modification. RealTime Scheduler in ns-2 yields execution

control to the kernel while waiting for the next event timer to expire. Most operat-

ing systems however only implement a coarse process-level scheduling granularity

(10 ms). Due to this limitation, the control comes back to the ns-2 scheduler only

after 10 ms. In order to schedule events at a finer granularity, we use busy wait,

and can process each event as soon as its timer expires. When a ns-2 event packet is

received from another node, the event packet is timestamped using the real system

time, and inserted into the event queue.

We run an instance of the modified ns-2 simulator on each node, and map one

virtual node to a physical node. In general, ns-2 generates all the events for each

virtual node, and we must filter out the events that do not belong to the virtual node

that this physical node corresponds to. If all the events are allowed to be generated,

this leads to high processor usage. This could lead to some events getting gener-

ated after the real time has progressed beyond the time to execute this event. The

correctness of hybrid simulation requires that events should not be scheduled in the

past. For instance, if the amount of time spent in processing the simulator’s execu-

tion logic is too large, then an event dispatching a packet to another node could be

delayed and may be dequeued by the scheduler after the real time has advanced past

its scheduled execution time. We prevent such delayed event execution by reducing

the number of events that the scheduler needs to process. In our implementation, we

make a simplifying assumption that only one virtual node is mapped to a physical

node. However, since we execute unmodified ns-2 script on each physical node, it

instantiates all the virtual nodes, including their traffic sources/sinks, on each phys-

ical node. Since we are binding only one virtual node to a physical node, therefore

we prevent traffic sources on any other virtual node from generating any packet on

this physical node. We identify the virtual node that is mapped to the physical node,
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and only allow traffic generators, like FTP and CBR, associated to this virtual node

to schedule events.

The internal packet format used in a simulator does not conform to the exact

specifications of the real protocols. Hence, a packet from the simulator needs to be

modified before it can be sent over the wireless medium. Current ns-2 implemen-

tation does not contain the protocol header fields needed for transmission over the

wireless channel. In order to transmit an ns-2 packet sent from the routing layer

onto the link layer, we implement a wrapper that encapsulates the ns-2 packets in a

UDP packet payload, and delivers it to the destination node using standard socket

layer. The address of the virtual node in the ns-2 packet is mapped to a core nodes

IP address to which the packet is destined. Upon receiving the UDP packet carry-

ing the ns-2 payload, the receiver node decapsulates the packet and inserts it into

the local event queue. The logic for distributed execution of hybrid simulation over

wireless channel is shown in Fig 4.9.

Our goal is to require minimal changes to the existing ns-2 scripts to execute

them on the hybrid simulation platform. To provide a single-script abstraction, we

kept the required changes independent of the individual core nodes. All changes

are composed at the central distribution node, and same script is loaded on all the

testbed nodes participating in an experiment. The changes to an existing script are:

(i) the script must point to the MiNT link layer implementation instead of the ns-2

link layer, (ii) each testbed node is assigned a physical node-id that is used in the

ns-2 script. The physical node id for each node is preassigned and the ns-2 script

reads it from an environment variable local to each node.

In our current design, only one virtual node is mapped onto a physical node.

This might limit the the size of the network that can be tested in hybrid simula-

tion by the number of physical nodes available. Careful observation reveals that

it could be fundamentally impossible to share a physical node for multiple virtual
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nodes given a single wireless interface. This is because if each of the virtual nodes

sharing a physical node is sending enough traffic to saturate the channel, then mul-

tiplexing the wireless card would be impossible using the real clock. Also, it would

be impossible to capture real MAC-level interaction, or effect of transmission over

real wireless medium, for the virtual nodes that are mapped to the same physical

node. For instance, assume a string topology of 3 nodes, where the first and the

last node are out of each other’s sense range. There are two flows, one between N1

and N2 (flow-1) and other between N3 and N2 (flow-2), active at the same time.

Given two physical nodes, if N1 and N2 are mapped onto the same physical node,

we fail to capture effects of real wireless medium on flow-1’s packet transmissions;

whereas, if N1 and N3 are mapped to the same physical node, then it would not be

possible to capture the MAC layer interaction between N1 and N3.

Using multiple network interfaces, it is possible to virtualize multiple nodes on

a single physical node with certain limitations. Let us assume that in the previous

example, we map N1 and N3 on one physical node, and N2 on another. Each

physical node is equipped with 2 wireless NICs. Then, flow-1 and flow-2 can use

separate interfaces on non-overlapping wireless channels. Each interface has a sep-

arate IP address. To simulate multiple logical nodes, each physical node must run

multiple ns-2 instances, each of which uses separate wireless interface. The draw-

back of this approach is that it does not capture the interference between the two

flows. In addition to that, the topology of the simulated network must be regular.

The distance between N1-N2 and N3-N2 must be same, and the mobility patterns

of N1 and N3 must be same. Otherwise it would not be possible to set up the

correct topology.
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4.3.2 Advanced Control Features for Hybrid Simulator

Most simulation tools at present is not rich in debugging features. It mostly supports

a complete run of a scenario followed by offline analysis. We propose two features

which will enhance the ability of a user to debug more interactively, as well as

to steer experiments towards more meaningful direction based on current states of

an executing experiment. First, a pause/breakpointing feature in hybrid simulation

allows users to control a simulation run dynamically by pausing a simulation run

at a user-specified breakpoint, inspecting its internal states and/or network condi-

tions, modifying different simulation parameters, and resuming the run. Secondly, a

rollback mechanism allows one to revert to a previous state of a long-running sim-

ulation, and resume from there with a different set of simulation parameters thus

saving valuable simulation time.

4.3.2.1 Pause/Breakpointing Technique

In hybrid simulation mode, the simulator is running in a distributed manner across

all nodes in the testbed. Debugging such a distributed application is a challenging

task. In addition to simultaneous start and stop of an experiment on all nodes,

MiNT simplifies protocol debugging by introducing other standard features of a

typical debugger, namely pause and breakpointing of an experiment.

The implementation of the pause and breakpoint feature in MiNT is based on

filtering of the event trace that is generated during the execution of the simulator.

In order to enable this feature, the ns headers along with the field names and offsets

are specified in a separate file. This description acts as the template for parsing each

event. There are two main event matching logic that is implemented. First, a user-

specified string (specified in the hybrid ns-2 script) is searched in every event string

that is generated on a node. For example, if a route error event (RERR) happens
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on a specified node (say Node 1) then the simulation on node 1 could be paused,

or this could lead to a breakpoint for the experiment. Secondly, it is also possible

to specify a value for a particular header field. For instance, if a specified node

sends a route message for a specified number of times, we may wish to pause and

inspect some state. When a match is found either for a string or a specific header

field value, then the subsequent action for pausing or breakpointing is triggered.

For pause, a signal to pause the simulation is sent locally. If its a breakpoint, then

the node daemon also notifies the control node to send a message to all other nodes

in the experiment to pause the simulation.

The implementation of the pause feature in MiNT requires modification to the

RealTime scheduler in the hybrid ns-2. Normally, the real-time scheduler sets the

simulator’s clock value to the system clock. To account for pause, the total pause

period is measured and subtracted from the system clock to update the simulator’s

clock. When the simulation is paused, the execution of events pending in the event

queue as well as those in transit to other nodes, is stalled. However, since the

simulator’s clock is also paused, no adjustment is needed to the time for the events

in the event queue. In the pause state, the user is allowed to change the physical

configuration of the testbed, or alter any physical parameters of the nodes in the

testbed, like node positions or transmit power, before resuming the execution.

4.3.2.2 Rollback Mechanism

The rollback feature for an experiment running in hybrid simulation mode gives the

flexibility to a user to repeat the experiment from a snapshot time in the past with

modified parameters fed to the experiment. This saves on experimentation time as

the entire simulation experiment need not be repeated from the beginning.

In order to implement this feature, the state of the executing process (hybrid ns-

2 in case of MiNT) is stored at regular intervals. On a rollback request, the saved
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state is loaded and execution repeats from that point. The controller node triggers

each node controller to fork the ns-2 processes running on a node and stores the

process id of the forked process. On rollback, the stored process closest in time

to the rollback time is selected. The remaining stored processes later in time to

the executing process are purged from the stored process list. In order to maintain

consistency of the display, once the node controllers report that the rollback oper-

ation has succeeded, then MOVIE also reverts all events it has processed till the

rollback time by looking up the history. Once both MOVIE and each node con-

troller have successfully completed the rollback initiation phase, the experiment is

restarted from the user interface.

Note that this feature also rolls back the node positions and the ns-2 script ex-

ecution. It is, however, not possible to rollback channel conditions, which is a

temporal physical phenomenon and not a software state.

4.4 Fault Injection and Analysis Tool (FIAT)

Fault Injection and Analysis Tool (FIAT) is the software component in MiNT used

for installing and testing real implementations. Our aim is to make it easy for de-

velopers to use MiNT as a platform for testing and debugging implementations of

different wireless protocols. To provide a development environment, it is important

to include support for debugging implementations easily. Typically wireless appli-

cations and protocols, that are designed for multi-hop networks involving multiple

nodes, are distributed in nature. This implies that testing and debugging applica-

tions on MiNT involves all the challenges of distributed system debugging. Tradi-

tional debugging techniques, such as tracing and breakpointing based on program

counters and process states, is not helpful in a distributed environment. Several

aspects of the system under test makes distributed debugging a hard problem. For
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example, communication delay among participating nodes creates complex inter-

action patterns making it difficult to identify the state of the system at any given

point in time; ordering of events could be different for each run making it difficult

to trigger problem scenarios deterministically.

A simple technique to debug a distributed system is to trigger all possible exe-

cution paths in the protocol/application implementation, log the execution behavior,

and look for anomalous behavior by analyzing the logs. For network applications,

a difficult problem is to test the implementation for all possible network faults, like

drop, delay, duplication or reorder of a packet. Often the testing method adopted

is code instrumentation to generate a fault. Modifying implementations directly

during testing is an inconvenient process, often requiring separate instrumentation

effort for each scenario. We alleviate this tedious process by providing a tool in

MiNT that allows developers to conditionally trigger network faults using a script-

ing language interface. The correctness of the implementation is also tested by

matching the response of the system as a result of the fault against correct response

behavior specified using the same scripting interface. Thus, FIAT is characterized

by two important features: (a) Automatic triggering of realistic network faults based

on user-specified network states, (b) Analysis of the system response to determine

correctness of the implementation.

Figure 4.10 shows the individual software components in the design of FIAT.

There are two main components, the scripting interface or the programming front-

end that allows the user to specify the fault scenarios, and the fault injection and

analysis engine, which introduces the faults and performs the testing. The program-

ming tool is a declarative scripting language, called the Fault Specification Lan-

guage (FSL). The fault specification in FSL is a < condition, action > pair, where

an action, such as a network fault event, is triggered when a condition is satisfied.

The conditions are specified as a function of different packet types, and the number
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Figure 4.10: The fault injection and analysis engine is used to test network stack

implementation in kernel or user-level socket applications. Fault injection and anal-

ysis layers reside on each node. The control node hosts the programming tool that

parses the user-defined fault injection and analysis scripts and initializes the FIEs

and FAEs for each test case scenario through a control protocol. The control plane

enables the components in the system to communicate during initialization, test

case execution and error reporting.
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of packets of that type counted on a particular node. Each < condition, action >

pair in the specification is translated into a table of rules that are used for selecting

packet types to monitor, as well as, set up action routines on successful evaluation

of a condition. The technique used for monitoring packet types is called active

probing. In active probing all packets at ingress and egress of a node is matched,

and if it belongs to the set of packet types in the rule table, it is counted. On ev-

ery update of packet count, the condition is evaluated and all nodes that are part of

the action routine are notified to trigger the action events, which may be counter

updates, assignment of variables, or introduction of faults by dropping, delaying or

modifying packets. The purpose of the fault specification interface is to simplify

the specification of test scenarios in FIAT. In order to do that we designed FSL with

a rich set of primitives to capture all network fault events. This programming front-

end is executed on a central controller node, that parses the user-defined script and

installs the relevant data structures on testbed nodes. The same scripting language

is also used for defining correct response of protocols to faults. The detailed syntax

and semantics of FSL is presented in Appendix C.1

The second important component in FIAT is the software module that introduces

the faults based on the user specified rules, and also matches the responses to infer

correct program behavior. This main functionalities of this module are matching

every ingress and egress packet for a match. On identifying a matching packet, this

module updates counters that keeps track of observed occurrences of this packet

type, transmits this updated counter values to other nodes, if required, and triggers

different actions, like a network fault if conditions based on this counter is satisfied.

This module sits below the kernel protocol stack, thereby allowing it to monitor all

incoming and outgoing packet, and perform different packet filtering actions. There

is an additional software layer, called the Reliable Link Layer (RLL) sitting below

the FIE/FAE layer. The RLL layer is intended to ensure that a packet accounted



4. MANAGEMENT AND CONTROL OF MINT: THE TOOL SUITE 89

for by the sender side FIE/FAE layer is delivered reliably to the receiving node.

This is important for the correctness because once a packet is accounted for by

the FIE/FAE layer it is implicitly assumed that the packet has been delivered to

the receiving node. In other words, the tool assumes the presence of a error-free

physical layer, such that all faults introduced in the system are completely synthetic

and there is no unaccounted fault. The implementation details of the FIE and FAE,

as well as the RLL, are discussed in the following subsection.

4.4.1 Implementation of FIAT

The implementation of different data structures and their maintenance is at the heart

of the implementation of the Fault Specification Language. The FIE/FAE, and the

RLL, is implemented as a loadable kernel module for Linux 2.4 operating system.

When a user is testing a prototype implementation of a protocol, FIE/FAE is loaded

in the kernel. It is implemented in Linux as a pseudo network device driver. A

pseudo network device is installed on the node running FIAT. All incoming and

outgoing packets are directed to this pseudo device before being sent to the real

network device. All packet matching operations, as well as introduction of network

faults, like dropping, delaying or modification of packets are implemented as part

of this pseudo driver.

4.4.1.1 Fault Specification language

The data structures used in the implementation of the FSL are a set of tables. The

execution logic of the FSL interpreter revolves around creating the set of tables that

can be used by the fault injection engine. The programming tool is a user level

process active on the control node. The user writes a script using the specification

language and submits it to the FSL parser through a command line interface. The
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ENABLE_CNTR(Cntr);

/* Packet and Node definitions */

Cntr: (pkt_type, node1, node2, SEND);

DROP(pkt_type, node1, node2, SEND);

FSL script

1 2 3 4 6 7 8

1 2 4 5 6 7

1 2 3 5 6 7 8

1 2 3 4

1 2 3 5 6 7 8

1 2 3 4 5 7 8 9

6 7

5

3

4

5

4

Figure 4.11: The FSL parser generates six tables from the FSL script. The tables

are sent to all the participating nodes. The packet and node definitions in the script

set up the filter table and node table respectively. In the figure, a matched packet has

affected counter 4 in the counter table. Counter 4 uses the term-id it maintains to

index into the 5-th entry in the term table. Similarly, 5-th term entry indexes using

the condition-id stored in it to trigger evaluation of the 4-th condition. If the 4-th

condition evaluates to true, it will use the action index to trigger the 6-th action in

the action table.

interpreter parses the script to generate a set of six tables which are used to initialize

each FIE and FAE involved in the test scenario. For simplicity, the complete set of

tables are sent to each node and ready for use for the FIE/FAE, although only a

subset of the entries in each table may actually be touched at a node.

The filter table and the node table are used for classification of each packet.

Hence these are static tables, unless there is a variable defined in the filter table

which is defined at run time. The rest of the tables are used to maintain Virtualwire’s

execution states across all the testbed nodes. There are four such tables, viz. counter

table, term table, condition table, and action table. A counter table contains the list

of counters used in the scenario script. For each counter entry, the parser generates
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pairs of {term id, condition id} that are dependent on the counter’s value, as well

as, the nodes which need to be reached. A counter may appear in multiple terms and

a term may appear in multiple conditions. Whenever a counter value changes we

need to update the term as well as, reevaluate the conditions. Hence, it helps to tag

which term and condition will get affected by a particular counter. A term table is

indexed by term ids, with each entry storing term expression as a tuple comprising

counter ids or integer constant and relational operator connecting them. A term

expression is evaluated and stored when the corresponding counter value changes.

A condition table is indexed by condition id. It stores the condition expression in

terms of term ids and logical operators connecting them. It also maintains a list

of {node id, action id} pairs so that whenever a condition is satisfied the action

can be triggered. An action table is indexed by action ids with each entry storing

the action to be performed and the corresponding node identifier. The interactions

among these tables are shown in Figure 4.11. In FSL, one can specify a counter on

a packet type on one node that can trigger the computation of a term maintained on

a remote node. Similarly, a condition that is found to be satisfied on one node can

trigger an action on another node.

4.4.1.2 Fault Injection and Analysis Engine

The control logic for detecting a packet of a particular type, and triggering action

based on a rule is shown in Figure 4.12. Once an incoming or outgoing packet is

matched to be present in the Filter Table, then the counter maintaining the observed

count of that counter type is updated on that node. An update counter routine

sets the value for the counter defined for that packet type. An update of a counter

triggers evaluation of the terms present on that node. A change in term state leads

to evaluation of the condition. The condition may be local to that node, or may

be composed of terms being evaluated on different nodes. In the latter case, the
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Figure 4.12: (a) The software architecture of the Fault Injection/Analysis Engine.

The “classifiers” denote the Filter Table and the Node Table used for trapping

the packets to monitor. The rest of the tables maintains state information for the

FIE/FAE. (b) The FIE control flow for every packet that matches a packet definition

in the Filter Table. A matching packet denotes an event that will affect at least the

counter table. New counter value can turn a term true, which will lead to a condi-

tion evaluation. If condition is satisfied it triggers an action. A fault type action,

like drop will consume the packet, but a counter manipulation action will release

the packet.
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changed term status is reported to the nodes where the condition is evaluated. We

choose to evaluate the condition at the nodes, where an action dependent on that

condition, might have to be triggered. This is followed by the triggering of actions,

which can be a fault type or a counter-update operation.

Several challenges are addressed to implement a Fault Injection and Analysis

Tool for a distributed multi-hop wireless environment. The FIE/FAE is based on the

concept of probing the network traffic through a node. Due to its implementation

as an additional layer in the protocol stack, it introduces extra processing overhead

on each packet, thereby increasing the protocol processing latency. An ideal fault

injection and analysis tool should be completely non-intrusive. Since this is not

possible, therefore we aim at minimizing the processing latency of the FIE/FAE by

only matching those packet types whose counters must be maintained at a node.

Packets of other types bypasses this layer after matching a few fields in the header.

The underlying mechanism of FIE/FAE is based on counting packets, and using

these packet counter states to evaluate conditions. Event triggering can be chained

across multiple nodes, that is, events triggered on different nodes can lead to the

triggering of events in other nodes. Hence it is necessary to transmit these messages

in a timely manner to the respective nodes. However, in a wireless environment it

might take multiple retries before messages can be successfully delivered. This

could lead to failure in isolating some of the anomalous conditions in a protocol.

Hence, successful execution of a scenario in this tool is not a sufficient condition

to ensure implementation correctness. However, violation of a condition reported

by the tool definitely indicates a bug in the implementation. Thus it is necessary

to have an efficient control protocol for exchanging the states of the system across

different nodes.

It could be possible that a control message must be delivered to all the nodes.
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In other words control messages may sometimes need to be broadcast. In a multi-

hop network where all the nodes are not in the same collision domain, the protocol

design must take care of forwarding broadcast packets by intermediate nodes. The

FIE/FAE layer of each forwarding node checks if the packet has a broadcast desti-

nation address, then it is forwarded. This is similar to a flooding mechanism used in

many ad hoc network protocols for delivering control packets across all the nodes.

In order to reduce the impact of the control traffic on the data channel, we use an

alternate wireless NIC for exchanging control messages, thereby creating no inter-

ference on the data traffic.

4.4.1.3 Reliable Link Layer

The unreliable wireless links introduce a problem with accounting of packets by the

FIE/FAE running on a sender node. Once FIE/FAE on the sender has accounted a

packet as transmitted, it implicitly assumes that the packet is successfully delivered

to the receiver. This implies that if the packet is lost in transit due to corruption, then

the accounting in FIE/FAE layer will be incorrect. Therefore, we must ensure that a

packet accounted by a sender-side FIE/FAE is reliably delivered. A way to prevent

the system from slipping into an incorrect state is to create a “controlled” envi-

ronment in spite of the losses due to the error-prone wireless channel. We design a

Reliable Link Layer (RLL) to prevent channel errors from causing packet drop when

the FIE/FAE is unaware of such packet loss. The RLL guarantees reliable delivery

of packets passed to it by the FIE/FAE layer. If multiple retries from the Reliable

Link Layer of the sender fails, the test run is aborted and must be repeated.

The RLL is implemented as another layer right below the fault injection layer,

as shown in Figure 4.10. All packets that are identified to be packet types to be

monitored are passed on to RLL. At this layer, another header is appended to the

packet and is sent out on air. The receiving RLL on successful reception of the
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packet responds with an acknowledgment packet, and sends the packet up to the

fault injection layer on that node. If the sender does not receive an acknowledgment

for a timeout period, it retransmits the packet. For this purpose, the sender currently

maintains the packet till it has successfully transmitted the packet. If the packet

transmission does not succeed in spite of multiple retries, then the packet is finally

discarded from the sender RLL, and an error notification is sent to the FIE layer

indicating the experiment scenario to be aborted.

4.4.1.4 Extending FIAT for Hybrid Simulation

The fault injection and analysis tool is currently implemented to test only real imple-

mentations. However, it is worth noting that the breakpointing mechanism in hybrid

simulation uses a very similar technique of packet matching and filtering based on

header fields, as used in FIAT. In this subsection we present a design for utilizing

the already implemented packet matching and filtering mechanism of ns-2 based

hybrid simulation for incorporating the fault injection and analysis mechanism of

FIAT.

Similar to the implementation of FIAT for real implementations, for hybrid sim-

ulation also the fault injection and the reliable link layer are inserted at the lowest

point in the network stack, as shown in Figure 4.13. The ns-2 event packets are all

directed to the MiNT link layer implementation, which is the layer that encapsulates

a ns-2 virtual packet into a real UDP packet and sends it over a socket connection.

When the FIAT mode is enabled, just like enabling the breakpointing mode, then

all packets are redirected to the fault injection and analysis layer instead of being

sent out directly over the socket. Each packet is matched for header fields that the

user has specified using the same scripts that are used for specifying the break-

point rules. Once the events are matched, the control plane implementation follows

the same technique as in FIAT implementation. The only difference in this case
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Figure 4.13: Extension of FIAT for hybrid simulation requires all ns-2 event packets

to be forwarded to the Fault Injection and Analysis layer, just as it is done for

breakpointing implementation in hybrid simulation. The packet is matched based

on the user defined packet filters, and if no match is found it is sent out as a UDP

packet for the designated node(s). On a match, the fault injection rules are triggered.

The reliable link layer necessary for FIAT is also implemented in user-space.
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Figure 4.14: The topology to keep in mind while understanding the fault specifica-

tion script in Algo 2. Node 1 generates a route request for Node 4 in this scenario.

The RREPs are lost due to bad links and fail to reach the routing layer of Node 1.

is that the control protocol is implemented at the user level instead of residing in

the kernel. The complete implementation of FIAT for hybrid simulation will be a

user-space implementation.

4.4.2 Example Application of FIAT

In this section, a simple example is used to introduce the use of the fault in-

jection technique to detect (in)correctness of a protocol implementation. Given an

implementation of AODV, we show how to verify the implementation of one of

its basic mechanism of route discovery. According to the RFC for Ad-hoc On-

Demand Distance Vector (AODV) routing [AOD] a route request is generated by a

node whenever there is a packet ready to be sent to a destination, and the originating

node does not already have a route to the destination. For example, in Figure 4.14,

N 1 has a packet to send to N 4. Therefore, N 1 creates a Route request (RREQ)

packet and broadcasts it. On receiving the first RREQ, the destination node (N 4)

responds by sending a unicast Route reply (RREP) packet. However, if the RREP

packet is lost, then the originating node (N 1) must wait for a fixed period of time,

and then rebroadcast the RREQ packet. According to the RFC, the number of times

the RREQ should be retried before sending a destination unreachable message to

the application is determined by a tunable parameter, RREQ RETRIES. This
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Algorithm 2 Fault Specification Script: The script tests the implementation cor-

rectness of response on AODV route request (RREQ) failures.
1: SCENARIO TCP RREQ Fail 200sec

2:

3: /* count RREQ packets */

4: RREQ : (aodvRREQ, node1, ALL, SEND)

5: /* count RREP packets */

6: RREP : (aodvRREP, node4, node1, RECV)

7:

8: (TRUE) >> ENABLE CNTR( RREQ );

9: ENABLE CNTR( RREP );

10: /* fault injection */

11: ((RREP > 0)) >> DROP aodvRREP, node4, node1, RECV;

12:

13: /*** Analysis Script ***/

14: ((RREQ > 2)) >> FLAG ERR ; /* incorrect behavior */

15: END

is by default set to 2, but can be modified. Assuming that in a particular imple-

mentation, the value of RREQ RETRIES must be set to 2. The purpose of the

script is to verify that indeed this is the case without going into source code of the

implementation.

The script maintains a count of the number of RREQs sent out from node 1

and the number of RREPs received from node 4. The fault is injected by drop-

ping any RREP that reaches node 1 from node 4. The RREP packet is dropped at

node 1 at the fault injection layer, thus creating a scenario where the RREP packet

is lost. After waiting for a timeout period (NET TRAV ERSAL INTERV AL)
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the originating node, node 1, resends the RREQ packet. The RREP sent back from

node 4 is again dropped as before. Since, the maximum number of RREQ to be

tried for a single packet is supposed to be set to 2, therefore, the final line in the

script checks that if the RREQ packet count goes above 2, then an error is flagged.

4.5 The Users’ View of MiNT

Using a testbed for experimentation requires understanding the steps involved start-

ing from configuration of experiments to data collection and analysis. In any large

scale testbed, it is essential to understand the complete workflow for running an

experiment. This problem of effective workflow management of experiments for

remote users has been observed by maintainers of various large scale testbeds, like

PlanetLab and Emulab. PlanetLab proposes Plush [ATSV06] for managing applica-

tions running over a large-scale distributed system. Similarly, Emulab is also trying

to come up with an integrated workflow management for remote users [ESS+06].

This section presents, with the aid of screenshots for different stages, the steps in-

volved in the life-cycle of an experiment in MiNT. Different tools discussed in the

earlier sections come together to present the complete experiment environment.

The overall set up of MiNT with respect to a user, as well as the MiNT admin-

istrator is shown in the schematic of Figure 4.15. The key players in the set up are

the administrator and the remote users. The resource they want to control are the

MiNT nodes. For an administrator, she has access to the MiNT gateway node, as

well as the tracking server. For a remote user, the access is limited to the gateway

node. From the gateway node, the MOVIE interface is used to gain all access to the

MiNT nodes. Thus any restriction that is required for user access of the testbed can

be setup at the gateway node. The details of the workflow for the administrator and

a remote user is presented in the following subsections.



4. MANAGEMENT AND CONTROL OF MINT: THE TOOL SUITE 100

MiNT

Tracking
Server

MiNT NodesGateway

MiNT Admin

User

Internet

Remote

User
Remote

Figure 4.15: The schematic shows the setup for accessing MiNT from a remote

machine.

Figure 4.16: The screenshot shows the initial set up screen for the tracking subsys-

tem.

4.5.1 MiNT Administrator’s Role

The administrator’s role is to bootstrap the entire system before a remote user can

login and experiment on MiNT. The administrator must login to the gateway node,

that functions as the control node for the MiNT nodes, and boot it up. This starts
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Figure 4.17: The screenshot shows the views from 6 different webcams.

the DHCP server that waits for incoming address requests from the MiNT nodes.

Next, MiNT nodes are booted, and each of them acquire a DHCP address, connects

to the control node, and waits for any commands to come in from the control node.

Finally, the tracking system is booted. Booting tracking system involves providing

the control server IP address, and the port over which to transfer the tracking data

to the control server. This is shown in Figure 4.16. Once the tracking system starts

collecting the images, the administrator can check if all the cameras are functioning

correctly by checking the feeds from all the webcams, as shown in Figure 4.17.

Another necessary step for the administrator is to create a user account for any

remote user on the gateway node.

4.5.2 Remote User’s Workflow

A user of the MiNT system can reside anywhere as long as she can connect to the

gateway node over the Internet. Another requirement on the users’ system is the

availability of a software that can export the display from a Linux machine. For
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Figure 4.18: The MiNT login screen. This is the first screen of MOVIE that the

user sees after logging in to the gateway node, and launching the controller.

example, a user working on a windows system may use the XWin32 software for

accessing the MiNT gateway node. Assuming an account has already been created

for the user on the gateway node, she can now login to the gateway using XWin32,

and open a shell. Then the user launches the graphical user interface for MiNT, that

is called MOVIE. This is shown in the screenshot of Figure 4.18.

The next step a user looks for is to create her own experiment and launch it on

MiNT. First, let us assume that a user would like to create a simulation experiment,

either hybrid simulation or a pure ns-2 simualtion. Besides generating the scripts,

as described earlier in Section 4.3, the user must also configure the physical enti-

ties in the testbed that cannot be configured directly through a script, as is usually

done in pure simulation. In order to set up an experiment on MiNT, a user may

need to configure the following, the testbed topology, the applications to execute

on the testbed nodes, the mobility pattern of the nodes, and the node parameters.

First, the testbed topology must be configured once the hybrid simulation script is

loaded following the steps as illustrated in the screenshots of Figures 4.19 - 4.22.



4. MANAGEMENT AND CONTROL OF MINT: THE TOOL SUITE 103

Figure 4.19: Step 1 for loading a hybrid simulation script for execution.

Figure 4.20: Step 2 for loading a hybrid simulation script for execution.
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Figure 4.21: Step 3 for loading a hybrid simulation script for execution.

Figure 4.22: Step 4 for loading a hybrid simulation script for execution.
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MOVIE allows users to move the node icons that shows up on the canvas to create

a topology. The movement of the node icon in MOVIE leads to physical movement

of a node in the testbed. Following the node movement, the link characteristics get

altered, and this is displayed back to the user, as shown in Figure 4.23. Based on the

link quality feedback, the user can further fine-tune the position of the testbed node

if necessary. In order to configure different parameters on a node, like the wireless

network card transmit power, the user has the option of configuring it globally for

all nodes, or it can be done individually for each node. Global parameter setting

is done through the Config Params button on the menu tab in MOVIE. For setting

parameters individually, right-clicking on the node icon pulls up a list of tabs, as

shown in Figure 4.26, that can be used for configuring each node. For describing

node mobility pattern, the user specifies the intermediate positions and final desti-

nations, along with their relative temporal offsets with respect to the beginning of

the simulation run. From these information, instead of statically computing a global

trajectory for each moving testbed node, MiNT relies on a run-time collision avoid-

ance algorithm that dynamically resolves possible collisions among testbed nodes

by halting some of them when collisions become imminent.

Once all the setup is complete for a hybrid simulation experiment, the MOVIE

shows a button Play, that is used to launch the simulation experiment simultane-

ously on all the nodes. It is possible to control the experiment from this point on-

wards either by pausing it, or by setting filters to stop the experiment on anomalous

events. During the experiment, values of several parameters are dynamically up-

dated and displayed in MOVIE. At the end of the experiment, the data collected on

each node can be viewed through MOVIE by fetching the file from a node. Again,

in this case, it is possible to look at individual files from each node, or just collect

all the files using a single click of a button. Figure 4.27 shows the result of an

experiment that is collected from a specific node.
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Figure 4.23: Executing a hybrid simulation script already uploaded on the chosen

MiNT nodes through a single click in MOVIE.

Figure 4.24: A hybrid simulation experiment in progress.
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Figure 4.25: A hybrid simulation experiment showing changes in routes and signal

strengths.

Figure 4.26: The screenshot shows the ability to configure data collection on a

per-node basis. The same interface is also used by a user to configure node level

parameters on a node-by-node basis, instead of setting them globally.
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Figure 4.27: Inspecting the output of a hybrid simulation experiment through

MOVIE.



Chapter 5

Evaluation of MiNT

This chapter deals with the analysis of different aspects of the testbed related to the

design and software tools as discussed in the earlier chapters. We start by evaluating

the fidelity of experiments on MiNT. Our main focus is to determine whether the

technique of miniaturization distorts the results that are derived through experimen-

tation on MiNT, as compared to a similar experiment without applying miniaturiza-

tion. Next, we analyze several algorithms that are used in the software tools applied

in MiNT. We mainly study the algorithms used for collision avoidance and auto-

matic re-charging. The benefits of hybrid simulation and insights revealed through

hybrid simulation are also presented. Experimental results on the the Fault Injec-

tion and Analysis engine are presented as part of the evaluation of MiNT. Finally,

we present a case study using a wireless protocol that we have analyzed on MiNT.

5.1 Fidelity of MiNT

We have introduced miniaturization as a new technique for conducting experiments

on wireless networks easily. However, it remains to be verified if miniaturization

109
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Figure 5.1: Graph showing variation of signal quality at different overall attenua-

tion on a link. It also shows the extent of temporal variation of the signal quality

at each sample point. The signal quality varies non-monotonically over distance

because of multi-path fading. The variation of signal quality for the attenuated and

the non-attenuated case follows the same pattern.

affects the conclusions that are drawn from the experiments on MiNT relative to a

typical wireless testbed. In this section, we show that miniaturization does not alter

the key characteristics that are important for the wireless experiments. However, it

is worthwhile to mention here that we are not aiming to mimic a typical wireless

testbed in every respect, rather we are providing a platform that should be viewed as

another set-up for such experiments without losing the generality of the conclusions

drawn from the experiments. If the goal is to design an exact replica of the non-

miniaturized testbed, a scaled down version of the testbed can be built, as shown

in the works of Kansei testbed [EARN06]. Our approach in showing the fidelity of

MiNT is by comparing results of experiments focused on each layer in the network

stack, where one run is on MiNT and the other run is on an non-miniaturized version

(no attenuators in the signal path) that closely resembles the MiNT set-up in terms

of channel conditions.
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Signal propagation is a key aspect of the wireless physical layer. We study

the impact of attenuation on signal propagation characteristics in MiNT. In this

experiment, we use 2 nodes connected in ad hoc mode and apply different levels of

attenuation. We compare the resulting spatial distribution of signal quality (SNR)

with that of the non-attenuated case. Figure 5.1 shows the variation of signal quality

reported by the card firmware, when signal attenuation on the path is varied from

40 dBm to 70 dBm. The signal quality is measured at 2 inches granularity. The

same graph also shows the extent of time variation of signal quality at each sample

point.

The figure shows that the signal quality variation is non-monotonic. There are

intermediate regions where the signal is weaker relative to the neighboring regions,

or even fades completely. These regions of weak signal quality, termed dark spots,

are primarily a result of multi-path fading. When the attenuation is removed com-

pletely, the signal quality improves, but the nature of its variation is preserved. The

IEEE 802.11-1999 standards [IEE] also show similar non-monotonic distribution

of signal quality. Furthermore, signal quality at any point for the attenuated and the

non-attenuated cases show similar temporal variations.

Figure 5.1 also indicates how to configure a topology in MiNT. For example,

when 70 dB of attenuation is applied, within a radius of 4ft (48 in) there are regions

of good connectivity (16 dBm) and complete disconnectivity (2 dBm). Reducing

signal attenuation and keeping the space unchanged makes the entire space better

connected. By adjusting attenuation level to a specific research task’s needs, one

can trade off the minimum signal quality with the physical space requirement of the

set-up. As the maximum communication range of a node at 70 dB attenuation is 4

ft, it should be possible to set up a multi-hop 16-node mesh network in a 12 ft x 12

ft space.

In this experiment, we study the impact of attenuation on fairness property of
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Figure 5.3: This graph shows bandwidth sharing between two unicast flows when

the senders are in the same collision domain, as shown in Fig 5.2, for an attenuated

and non-attenuated set-up. The link quality between the two contending nodes is

kept same across both set-ups. The channel is shared equally in both cases proving

that the MAC layer is unaffected by introduction of attenuation.
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Figure 5.4: The 2-hop topology used to run the AODV protocol experiment. The

same topology was replicated with and without attenuation on MiNT keeping the

link quality same.

channel access algorithm. We set up a string topology of 4 nodes, as shown in

Fig 5.2. Node N2 is sending unicast traffic to node N1, and node N3 to node

N4. Since N2 and N3 are in the interference range of each other, they contend for

access to the shared wireless medium. We compared two different set-ups – one

with attenuators and the other without attenuators – while keeping the link quality

same across both set-ups.

Fig 5.3 shows the instantaneous throughput of the two UDP flows for both the

cases. As soon as the second flow starts, the channel is shared equally between the

two contending flows. The bandwidth sharing behavior is same in the attenuated

and the non-attenuated case.

In this experiment, we show that the behavior of the routing layer protocols is

not affected by introducing attenuators on the signal path. We use a 4-node network

topology, where the end nodes are connected over 2 hops, as shown in Fig 5.4. In

this experiment, we use AODV-UU [Ad-] protocol to route packets between N1

and N4. The link quality is maintained same across the attenuated and the non-

attenuated runs.

In each experiment, the route between node N1 and node N4 (chosen by

AODV-UU) is made to fail by artificially failing the intermediate hop. Figure 5.5

depicts the time taken for new route discovery when such a failure occurs. The time

taken in both attenuated and non-attenuated cases varies between 7 ms to 12 ms,
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covery time in attenuated and non-attenuated set-up using the topology shown in

Figure 5.4. The route discovery time varies between 7 ms to 12 ms, and the av-

erage time for attenuated and non-attenuated cases are 10.916 ms and 10.416 ms

respectively.
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Figure 5.6: This graph shows the throughput of a 1-hop TCP flow. The first set-up

does not use any attenuator, while the second one uses a 20 dB attenuator. The link

quality is kept same in both the experiments.

and the average over 12 samples is 10.416 ms and 10.916 ms for the non-attenuated

and the attenuated case respectively.
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To prove that the transport layer is unaffected by attenuators, we use a 1-hop

TCP experiment. We use 2 nodes connected in ad hoc mode and measure the

throughput of a TCP connection between them. The link quality is again main-

tained same across the attenuated and the non-attenuated set-up.

Figure 5.6 shows the TCP throughput over 120 sec, averaged over 3 sec peri-

ods. The long-term average for the TCP flows are 1.514 Mbps and 1.517 Mbps

for the non-attenuated and the attenuated case respectively. Even the instantaneous

variations are similar in nature, suggesting that the transport layer behavior is not

affected by use of attenuation.

5.2 Evaluating MiNT features

MiNT has several interesting features like the collision avoidance during mobility

of the nodes, automatic re-charging of the nodes. In this section, we evaluate and

study scalability of these features. There are several parameters that can be tuned to

get optimal performance for the different features that have been discussed earlier.

Wherever possible we will also present the effect of changing the parameters.

5.2.1 Tracking Accuracy and Scalability

The tracking system is required to get accurate position/orientation information of

each node in the testbed. Ideally, if each step of the Roomba movement is exact,

then it is possible to figure out the current location of the node, based on the initial

position and the steps executed. However, due to floor friction and mechanical

non-homogeneity of the Roombas, the Roomba movement is not exact. Figure 5.7

shows the inconsistency in Roomba movements for both the move forward as well

as the rotate commands. This makes it necessary to design a full-scale vision based
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Figure 5.7: Roomba movement with each set of move/rotate commands. The dis-

tance traveled and rotation performed are not consistent making it difficult to track

the Roomba position based on steps executed. This inconsistency makes the vision-

based tracking system indispensable to keep track of current node positions.

tracking system that can provide a more accurate locationing information than that

based on odometry.

We measured the locationing accuracy of the tracking system. The inaccuracy

is measured as the difference between the location and orientation of a MiNT node

as returned by the tracking system and its true coordinates. The mean error in the

coordinate distance is 0.95 inches with a standard deviation of 1.17 inches. The

mean error in orientation is 3.36 deg with a standard deviation of 2.77 deg.

Another important factor is the scalability of MiNT-m’s object tracking algo-

rithm with increasing number of nodes. This is measured as the time taken for

end-to-end tracking (including frame grabbing, node identification, node location-

ing, and merging of location data from multiple tracking servers) as the number of

nodes in the testbed increases. In Figure 5.8, we plot the time taken by the tracking

server to produce one set of node locations. Although the tracking is done in par-

allel on all the tracking servers, multiple nodes could be clustered within the area
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Figure 5.8: Scalability of the tracking system in terms of nodes tracked. With

increasing number of nodes the time to locate each node increases. With 12 nodes,

the tracking system can produce one location update every 0.3sec.

covered by one tracking server. This leads to an initial increase in the tracking over-

head with number of nodes. With 12 nodes, the tracking system could produce one

location update for all the nodes every 300 msec. The maximum number of nodes

that can fall within the coverage area of a tracking server is limited. Hence, as the

testbed scales further and more tracking servers are added, the tracking overhead

should not increase any further.

One of the physical constraints we had was the height of the ceiling. If the

webcams could be placed higher up, then each webcam could cover a larger area

thus scaling the testbed size. To evaluate this theory, we scaled down the size of the

images we got from the webcams, and ran the tracking algorithm on them. Even

when each webcam image is shrunk to 1/16th of its original size (equivalent to

placing the camera at 4 times the current height), the tracking system works well.

In particular, the tracking system’s locationing error just increased from 0.95 inches

to 2.32 inches, while the error in reported orientation increased from 3.36 deg to

4.11 deg.
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Figure 5.9: Node path trace collected from MOVIE: Given a destination a node can

detect the presence of obstacles, and find a collision free path.

Number Reconfiguration

of Nodes Time (sec)

2 18

3 38

4 47

5 82

6 100

Table 5.1: Topology re-configuration time increases with the size of the testbed.

5.2.2 Collision Avoidance

Figure 5.9 shows the path followed by a node as a result of the trajectory determi-

nation algorithm used in MiNT. There are three other obstacle nodes on the mobile

node’s path. The trajectory determination algorithm takes the obstacles into ac-

count, and generates a path that avoids these obstacles. The line in the figure shows



5. EVALUATION OF MINT 119

the resulting path.

To get an estimate of the overhead introduced by the combination of posi-

tion/orientation tracking and collision avoidance algorithm, we perform the follow-

ing experiment. We measured the time taken by a mobile node to move from initial

marked position to final marked position once with (i) tracking system and colli-

sion avoidance turned on, and next with (ii) tracking system and collision avoidance

turned off and the mobile node moving through the same path selected in case-(i).

The time taken for case-(i) was 31 sec, while that for case-(ii) was 26 sec, show-

ing that tracking system and collision avoidance algorithm combined induce a 20%

overhead on configuration time.

Table 5.1 presents the topology reconfiguration time. In each experiment run,

all nodes started in parallel from fixed initial positions around the corner of the

testbed arena. The final position of each node was chosen randomly and kept con-

stant for all the experiments. As more nodes are introduced and they try to reach

their destination in parallel, there are effectively more dynamic obstacles present

in the environment leading to increase in the time to reach the final topology con-

figuration. Most current testbeds either do not support experiment-by-experiment

topology reconfiguration, or require several hours to come up with a specified topol-

ogy. Comparatively, MiNT reconfiguration takes time of the order of minutes.

5.2.3 Auto Re-charging

We measured the charge and discharge times for the two batteries. This information

is used by the residual charge estimation algorithm to predict when a particular node

needs to be re-charged. With a fully charged battery, the RouterBoard lasts around

13.5 hours without performing any network or hard disk operations. The runtime

reduction due to different activities are: 2.05 sec for every 1M network operations,

and 8.82 sec for 1K disk operations. The runtime reduction due to IR operations
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Figure 5.10: Charge and discharge cycles of a MiNT node. If the RouterBoard is

halted during charging, the battery charges faster, hence it runs longer as shown by

the increase in discharge time.

is negligible. On the other hand, the Roomba battery lasts for 2 weeks without

movement, and can perform 13840 moves till the battery dies. Since the number of

mobility commands executed are less than the RouterBoard activities, therefore the

RouterBoard usually depletes faster. The full charging time for the Roomba battery

is also 3 hours, which is less than the time to charge the RouterBoard’s battery.

Figure 5.10 shows the base discharge time (no network card or hard disk ac-

tivity) for the RouterBoard battery when the node has been charged for different

periods of time. The linearity of the discharge time with respect to charge time sim-

plifies the algorithm used to estimate how much charge the battery has accumulated

for a certain charging duration.

If the RouterBoard is active during the charging process, the battery gets de-

pleted while charging. This leads to a faster discharge during operation. To increase

the lifetime, the RouterBoard is put into a halt state during charging, and powered

up using Wake-on-wireless LAN feature available on the wireless network cards
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Figure 5.11: Topology used for understanding the impact of signal propagation

characteristics on channel access pattern determined by the MAC layer. Node pair

N1-N2 is kept fixed at one position, while node pair N3-N4 is moved away from

N1-N2.

before putting it back into operation. This technique produces a substantial im-

provement on a testbed node’s battery lifetime, as shown in Figure 5.10.

5.3 Evaluating Hybrid Simulation against Pure Sim-

ulation

In this section we present a comparative evaluation of software-only ns-2 simula-

tions and hybrid ns-2 simulation executed on MiNT. The main difference between

pure ns-2 simulation and hybrid simulation is that the latter replaces the simulated

link, MAC, and physical layers with real implementations and real wireless chan-

nel. We study the impact of physical layer characteristics, viz. signal propagation

and error characteristics, on data transfer rates for both the platforms.

5.3.1 Signal Propagation

In this experiment we demonstrate the impact of signal propagation on experimental

results in pure simulation and hybrid simulation. We use 2 unicast flows, between

nodes N1-N2 and N3-N4, as shown in Fig 5.11. The MAC layer on the senders
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Figure 5.12: This graph shows the difference in experimental results obtained from

a similar set-up in two different environments – pure simulation and hybrid sim-

ulation on MiNT. It shows the impact of signal propagation characteristics on the

behavior of the MAC layer. The graph shows the throughput variations of two uni-

cast flows, shown in Figure 5.11, as they are moved away from each other. Use

of two-ray ground propagation model in pure simulation leads to the MAC layers

of the senders perceive the other sender’s transmission till they are out of “sense

range”. In hybrid simulation, the signal quality variation is non-uniform, and the

senders move in and out of sense-threshold, and hence the non-uniform throughput

variation in hybrid simulation.
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Figure 5.13: The graph captures the impact of temporal variation of signal strength

on MAC layer interaction between 2 nodes at a point (X in Figure 5.12). We use

the set-up shown in Figure 5.11. Initially the senders can sense each other, hence

the two flows are not active simultaneously. After a while, the signal quality drops,

and the senders can no longer sense each other, resulting in two flows being active

at the same time.
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N1 and N3 senses the channel before transmitting. Channel is perceived busy if

signal from one active sender, say N1, reaches the other sender, say N3. If N1

cannot sense N3 then the two flows will be active simultaneously, giving higher

throughput to both flows.

In our experimental set-up, we replicated the same topology in ns-2 and MiNT.

In ns-2, we use the two-ray ground propagation model, with a ratio of 1:2 for hear-

ing range and sense range (22ft : 44ft). In MiNT, the signal propagation is de-

pendent on the environment, and this determines whether one node can hear/sense

another node’s activity. In ns-2 the channel capacity is set to 2 Mbps. In MiNT,

we set the card’s transmission rate to 2 Mbps. For both cases we use a CBR traffic

source on N1 and N3 to pump packets of size 1000 bytes at 2 Mbps, that ensures

that both senders are constantly trying to access the channel.

Fig 5.12 shows the throughput of each flow as well as their aggregate in pure

simulation using ns-2, and hybrid simulation using ns-2 on MiNT. In pure simula-

tion, till the point the two senders are within the sense distance (44 ft), the flows

are constantly interfering. Therefore, the throughput of each flow is around 0.75

Mbps, giving an aggregate throughput around 1.5 Mbps. As soon as the senders

move out of sense range, the flows stop interfering and the aggregate throughput

shoots up to 3.2 Mbps. Unlike in pure ns-2 simulations, where the throughput of

each flow stays uniform at 0.75 Mbps till the distance exceeds the sense range, in

hybrid simulation, there are distinct variations in throughput, especially at 26in and

40in distances, where the senders cannot sense each other.

The non-uniform distribution of throughput in hybrid simulation is explained

with reference to the signal quality graph for 70 dB attenuation, shown in Fig 5.1.

When the signal quality drops due to the presence of a “ dark spot”, the two senders

fail to sense each others’ transmissions. Therefore, the two flows can send packets

at the same time.
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We also observe that with increasing distance the number of spikes in through-

put increases. At shorter distance, even if the senders fall in dark spots of each other

and cannot communicate, they can still sense each other. However, with increasing

distance, the dark spots completely isolate the two senders.

Additionally, there are points where the temporal variation of the signal qual-

ity is large. In Fig 5.12, we have marked one point X at distance 58in, where the

aggregate throughput is less than the peak value. This is explained using Fig 5.13,

that captures the temporal variation of flow throughput at a point using interaction

between the two flows. The interference is initially higher leading to channel con-

tention between the senders, but later the interference fades, and both the flows can

pump data simultaneously. Pure simulation fails to capture this non-uniform spa-

tial and temporal variation of throughput, which is an artifact of signal propagation

characteristics.

5.3.2 Error Characteristics

In this experiment, we show the difference in error characteristics captured using

pure ns-2 simulation and hybrid simulation running on MiNT. We use a CBR traffic

source to pump data from one node to another. In pure simulation, we choose an

error model that is most commonly used in ns-2-based simulation studies, where

each packet is corrupted based on a uniform random variable and pre-specified

error probability. On the other hand, errors in hybrid simulation occur due to the

ambient noise in the environment.

Fig 5.14 plots successful and unsuccessful packet transmission in simulation,

hybrid simulation, and real-world communication. The results show that simple

bit error models in simulation could produce qualitatively different behavior than

those observed in real radio channels as seen on MiNT. Therefore, testing wireless

protocols that depend on accurate bit error characteristics becomes much easier and
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Figure 5.14: The graph plots the packet errors encountered, represented as lost

sequence numbers at the receiver, when a 1 Mbps CBR traffic source sends 1000

bytes data packets between 2 nodes for 1 minute duration in a software-only ns-

2 simulation, and in a hybrid ns-2 simulation run on MiNT. It also shows the packet

error rate for the same two nodes when data is sent using socket applications over

UDP in real implementation. The packet error rate is fixed to facilitate comparison.

produces realistic results with the use of hybrid simulation technique.

5.3.3 Hybrid Simulation Performance

The core computing platform we use is a RouterBoard-230 that has a 266 MHz

CPU and is processor-limited. As we add more processing overhead on the system,

the maximum throughput we can achieve goes down. We measured the throughput

degradation of a single hop as we enable different features: remote tracing, per-

packet local tracing, experiment breakpointing, and experiment rollback.

We first look at the impact of different forms of tracing on the maximum

throughput achieved between two communicating MiNT nodes. Table 5.2 lists

the results. Interestingly, even without tracing, ns-2 application agents could only

achieve 20.5 Mbps as compared to 33 Mbps achievable by a simple UDP flow
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Tracing Type Throughput (Mbps)

No Tracing 20.51

On-line Remote Tracing 17.043

Per-packet Application Tracing 8.423

Per-packet Router Tracing 7.83

Per-packet MAC Tracing 16.08

Per-packet Full Tracing 5.53

Table 5.2: Hybrid-ns throughput as the tracing is turned on. Due to tracing overhead

the available throughput drops.

running between the same nodes. This is because of the additional processing over-

head introduced by ns-2, in contrast with a simple UDP sender that needs almost

no processing to prepare a packet. To achieve 20.5 Mbps throughput, we did few

optimizations to ns-2 such as use of heap scheduler instead of dynamic hash-based

scheduler. This was required to avoid stalling of ns-2 during the frequent re-hash

operation done by the hash scheduler.

Any form of tracing introduces further CPU processing overhead due to string

operations done by ns-2. The on-line remote tracing is done only for selected events

and hence results in least degradation (3.5 Mbps). Per-packet tracing introduces

maximum overhead. But even with full per-packet local tracing and on-line re-

mote tracing turned on, the nodes could achieve 5.53 Mbps, enough to saturate a

channel operating at 6 Mbps link rate. Current hybrid-ns implementation copies

entire protocol packet including its payload between user-space and kernel-space

for sending/receiving. As simulated protocols do not care about the payload, one

potential optimization is to only copy protocol headers.
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Figure 5.15: This graph shows that the throughput of hybrid simulation will drop

as expressions are added to the breakpoint list.

Another feature of hybrid-ns is breakpointing of experiments. This feature re-

quires matching expressions to trigger the breakpoints when the event occurs. Since

matching different fields incurs overhead, the throughput reduces. In Figure 5.15,

we show the impact of increasing number of breakpoint expressions on the through-

put of hybrid simulation. Despite the CPU bottleneck, the overhead increases only

slightly with increasing number of expressions. This is because the expressions are

only checked once for each packet, limiting the extra processing burden introduced

by breakpointing.

We similarly evaluated the performance of rollback feature. This feature re-

quires regular snapshot (using fork() system call) of ns-2 process running on every

MiNT node. Linux kernel’s fork() system call automatically uses copy-on-write

technique to avoid copying of all the pages at the fork time. This spreads out the

throughput degradation to a few seconds after the fork() system call. With even a 1

minute snapshot granularity, the overall throughput degradation was less than 0.25

Mbps.
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Figure 5.16: Comparison of round-trip timing for ping with packet size 1200 bytes,

and FIAT enabled and disabled.
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Figure 5.17: Comparing the throughput measured for UDP traffic between 2 nodes

with and without FIAT inserted in the protocol stack.

5.4 Evaluating Fault Injection and Analysis Tool

In this section, we evaluate the Fault Injection and Analysis Tool by showing how

it affects normal performance of a protocol. This indicates the degree of intrusive-

ness of the tool. Next, we show with an example on the implementation of AODV

routing protocol from Uppsala University how FIAT can be used to study the cor-

rectness of protocol implementation.
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We first conduct a simple ping test where we send out 100 ping packets with a

size of 1200 bytes between two nodes over the wireless medium. We ensure that

the link quality is good such that the link losses will not introduce additional delays

in our measurement. We are interested in measuring the processing latency due to

FIAT. The experiment is repeated with and without the Fault Injection layer inserted

in the network stack. The number of rules actively matched when FIAT is inserted

is three. Figure 5.16 shows the round-trip time for the ping requests. The average

time taken for the case without FIAT is around 0.6 ms, whereas after inserting Fault

Injection layer the average round-trip time has gone upto 0.8 ms. This shows that

on an average the Fault Injection Layer is introducing an overhead of about 30%

in the system we are using. The processing latency can be reduced by using faster

processors.

We conduct another experiment with the same setup. In this case, we measure

the UDP throughput between the same two nodes with and without the Fault In-

jection layer inserted in the protocol stack. The result is similar to the observed

result in the ping experiment. From Figure 5.17, unless there is a variation in the

channel quality, the overhead introduced by the packet processing functions of the

FIAT layer is around 30%. With increasing number of rules, the processing latency

will increase further, hence it is advisable to select the rules carefully to keep it as

low as possible when using FIAT.

The following experiments are aimed at showing how FIAT can be used in prac-

tice. We choose an implementation of the AODV routing protocol from Uppsala

University, AODV-UU for testing. In the fault injection script we specify rules to

drop all the HELLO messages that are sent out from a node. The messages are

dropped at the receiver node, whose IP address in this case is 192.168.100.196.

The sender node’s IP address is 192.168.100.189. Initially, the sender node finds a

route to the destination node, and that can be seen in Figure 5.18. It shows a VAL
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Figure 5.18: The figure shows the Routing Table output for the AODV-UU. It shows

that as the HELLO packets are admitted by the FIAT layer, the path is restored

proving that the implementation is correct.

route from 192.168.100.189 to 192.168.100.196. But after the script is started, the

HELLO packets are dropped, and the route becomes invalid, indicated by the INV

flag in the routing table. The log of events for the routing protocol are shown in

Figure 5.19, where it can be seen that HELLO message failure is received. Finally,

when the script finishes, the HELLO messages again go through, and the route is re-

stored. This indicates the correctness of the implementation of the HELLO protocol

in AODV-UU.

In the second case study involving FIAT, we use 4 nodes which are in a multi-

hop setup. There exist multi-hop paths with hop count two between source node

(IP addr: 192.168.100.196) to destination node (IP addr: 192.168.100.190) through

other intermediate nodes. Initially, when packets are sent from the source to the

destination, the AODV protocol discovers the route through node with IP address

192.168.100.191. After a fixed number of packets are exchanged, FIAT is used
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Figure 5.19: The log of the events when the HELLO packets are dropped by the

FIAT layer at the receiver, and then when it is again restored.

Figure 5.20: Routing Table log – part I
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Figure 5.21: Routing Table log – part II
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to drop all packets going through 192.168.100.191, thereby disabling the path to

the destination node. On route failure, the AODV protocol successfully discovers

the alternate path through node 192.168.100.189. Again, when the path through

192.168.100.191 is restored by allowing all packets, this path is rediscovered, and

the route switches. The routing table in Figure 5.20 and 5.21 recorded the changes

as it happened during the protocol run indicating the correctness of route discovery

implementation in AODV-UU.

5.5 Case Study: Ad-Hoc Transport Protocol (ATP)

In order to demonstrate the usefulness of MiNT as an experimentation platform, we

studied a cross-layer MANET transport protocol called ATP [Kar03] using MiNT’s

hybrid-ns simulation feature. Although, ATP has been comprehensively evaluated

in pure ns-2 simulations, its behavior has not been studied on a real testbed. Our

experimental study revealed several important characteristics of the protocol that

we discuss in this subsection.

In ATP scheme, every intermediate node measures queuing and transmission

delays for each packet passing through it. The sum of exponentially averaged queu-

ing and transmission delays yields the average packet service time experienced by

all the flows going through the intermediate node. In the equilibrium condition,

each ATP flow attempts to maintain exactly one data packet on every router along

the path [Kar03]. The service time therefore reflects the ideal dispatch interval for

all the flows competing over the bottleneck link. Every packet bears the maximum

service time encountered on any of the intermediate hops. The bottleneck service

time is communicated back to the sender, which adjusts its packet dispatch interval

to match this service time.
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Figure 5.22: Fluctuations in ATP’s bandwidth estimation. The channel bandwidth

is fairly constant, as seen by an optimal UDP stream sent over the same 3 hops.

5.5.1 ATP’s Inaccurate Bandwidth Estimation

One of the key issues we observed with ATP is bandwidth under-estimation. Fig-

ure 5.22 shows the fluctuations in bandwidth estimation by an ATP flow originator

performing FTP upload to a node that is 3 hops away. The same figure also shows

the optimal bandwidth as seen by a UDP flow. The optimal flow was found by

sending a UDP stream at different rates until the maximum was achieved. The sta-

bility of the optimal UDP flow suggests that the channel bandwidth fluctuations are

negligible, and most of the bandwidth fluctuations are internal to the ATP protocol

itself.

Further experimentation revealed the root of the problem to be the service time

measurement metric proposed by ATP. The problem with the overall-service-time

approach is that it couples the queue-size management with rate estimation, which

leads to traffic fluctuations, and in turn non-optimal estimation of channel band-

width [RJV94]. More concretely, it is very hard to maintain exactly one data packet

from each flow on every router. If there is even a slight change in transmission time

of a single packet, a queue (say of two packets) builds up on the router for the rest of
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the epoch. Clearly, an extra packet in the queue does not indicate any change in the

network bandwidth. However, in the next epoch ATP sender proportionally reduces

its sending rate (to half in this example) to bring the queue down to one packet. It

is in these epochs, that an ATP sender under-estimates the path bandwidth.

5.5.2 ATP’s Flow Unfairness

It has been shown in [Kar05] that ATP gives flow fairness. In Figure 5.23, taken

from [Kar05], it can be seen that as a second flow is introduced, the bandwidth

is shared fairly between the two flows. However, we tested several scenarios and

came up with two common ones where ATP’s behavior shows significant unfair-

ness. These scenarios are depicted in Figure 5.24. The first example (Figure 5.24

(a)) corresponds to the hidden terminal scenario. Here one wireless link’s transmis-

sion is inhibited by another link, eventually leading to unequal bandwidth allocation

between the two. Table 5.3 shows the resulting bandwidth distribution between the

two flows. Flow 1 originating from the hidden node gets much lesser bandwidth

than Flow 2 originating from the inhibiting node. Although one could attribute this

problem solely to the 802.11 MAC layer, this problem can indeed be addressed at

the transport layer as demonstrated by fairness of optimal UDP flows going over

the same network.

The second example (Figure 5.24 (b)) corresponds to a general channel space

sharing scenario. Concretely, ATP allocates a radio channel’s bandwidth fairly

among flows from a single node, rather than among all flows from all nodes that

share the radio channel. As a result, a flow emanating from a node with fewer flows

tends to get a larger than fair share of channel bandwidth. This is shown in Table 5.4

where Flow 4 gets much larger than its fair share, while Flow 1 and Flow 3 suffer.
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Figure 5.23: This graph from [Kar05] shows the simulation results of running two

flows that uses ATP. It can be seen that the bandwidth is shared fairly between the

two flows when the second flow is introduced.

Flow ATP Thruput Optimal Thruput

(Kbps) (Kbps)

Hidden (Flow 1) 570.4 985.8

Inhibitor (Flow 2) 1104.6 1186.4

Table 5.3: ATP accentuates the hidden terminal problem.

Flow Id ATP Thruput Optimal Thruput

(Kbps) (Kbps)

1 383.0 641.6

2 590.1 641.6

3 484.7 641.6

4 1010.8 641.6

Table 5.4: ATP’s fairness in a general channel sharing scenario.
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Figure 5.24: ATP’s unfairness scenarios: The wireless node getting a lesser than

fair share of bandwidth is numbered 1 (and colored in red or white), whereas the

one getting a larger share is numbered 3 (and colored in green or black). (a) Node

1 lacks information about Node 3’s transmissions, attempts its communication at

inopportune times, and eventually backs off unnecessarily. (b) Flow F1, F2, F3,

and F4 all share the same channel, but ATP, like most other transport protocols,

allocates more bandwidth to F4 than to others.
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5.5.3 Discussion

This protocol study demonstrates the usefulness of different MiNT features. Specif-

ically, the ability to perform hybrid-ns simulations enabled us to re-use the pure

ns-2 code written for ATP. Similarly, the ability to reconfigure topology through

MOVIE enabled us to come up with specific topologies that revealed the protocol

weaknesses. MOVIE enabled us to visualize the queue size on every ATP router,

thus helped pinpointing the reason behind ATP’s fluctuations.

5.6 Case Study: Evaluating Ad-hoc Routing using

ETT metric

In this case study, we evaluate the impact of using a routing metric, called Ex-

pected Transmission Time (ETT) in ad-hoc routing protocols [DPZ04]. We focus

in understanding the benefit of using testbeds over simulation, if any, in evalu-

ating new routing metrics that are being proposed for different types of wireless

networks. It has been pointed out in prior research that in most real deployments

of multi-hop wireless networks the shortest path metric used for routing may not

yield the best performance [CABM03]. An alternate routing metric proposed is the

Expected Transmission Count (ETX) [CABM03], that measures the expected num-

ber of transmissions, including retransmissions, needed to send a unicast packet

across a link. The measurement of ETX path metric is based on the loss rate on the

channel, and does not take into account the link bandwidth. ETT augments this by

factoring in the link bandwidth in order to select the link metric for routing. ETT

can be defined as the expected amount of time it would take to successfully transmit

a packet of some fixed size S on that link. The measurement of ETT takes into ac-

count the link loss rate as well as the bandwidth of the link. The path metric based
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Figure 5.25: The variation of link ETT is limited in simulation due to lack of error

models and temporal variations in the link. This is reflected in a relatively stable

route ETT in the graph.

on ETT adds up the ETT for each link, and the routing selects the one with a lower

value of the summation. For a path with n hops, the path metric is thus defined as,
n∑

i=1

ETTi.

In our experiment, first we use ns-2 to compute path ETT metric for a 3 hop

route in a simulation environment with 20 nodes. We use the shadowing model,

with a path loss exponent for shadowed urban area (β = 3.0), and the shadowing

deviation (δ) value set to 2. We measure the change in the path ETT value at regular

intervals in order to study how it varies in simulation. A similar experiment is con-

ducted on MiNT where we measure the path ETT metric for 2 routes starting from

the same source and ending at the same destination, but taking 2 distinct routes.

In the testbed, the variation of the path ETT is again measured at regular intervals

for the two routes. The results of the simulation is shown in Figure 5.25. It shows

very little fluctuation in the path ETT values collected over a period of time. The

same data for the MiNT, shown in Figure 5.26 shows frequent fluctuations of the
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Figure 5.26: The link ETT in MiNT varies over time leading to a fluctuation of

the route ETT. The graph shows the variation of route ETT for 2 routes between a

source and destination.

route ETT values on both the routes, and often the shift in the values is dramatic

enough to warrant a switch in the route for better performance. This is an effect

of changing link conditions in the testbed due to temporal variations in the link, as

well as changes in the error rate due to external interference. This shows that while

studying the impact of path metrics, like ETT it is essential to rely on testbeds.

We did another macro measurement to show how choice of path will affect

throughput. In this experiment, we choose a source destination pair on MiNT, and

configure 2 wireless NICs on all the nodes in the path in two non-overlapping chan-

nels. Traffic is sent along both the paths, and the throughput recorded. The variation

in the throughput along both the paths, as shown in Figure 5.27 shows that path ETT

metric should be computed at regular intervals in order to make optimal choice of

the route for flows. Path ETT metric as seen in simulation will not be able to high-

light this fact effectively, showing the importance of using MiNT-like testbeds for

such studies.
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Figure 5.27: The graph shows the variation of throughput between a source des-

tination pair between two routes. The fluctuations in the throughput indicates that

route ETT metric must be computed frequently if optimal path has to be used at all

times.

5.7 Critique on Remote Usage of MiNT

We have designed MiNT to be used as a remote experimentation platform. How-

ever, we did encounter a few hurdles while using MiNT remotely. In this section,

we record our experience of using MiNT to run a simple hybrid simulation script

from a remote location1. In this experiment, we use 8 nodes to set up a wireless

mesh network. We introduce 3 competing flows and record their throughput. The

main purpose of this experiment is to test the ease of topology setup, setting up an

experiment, and collection of results.

The first step in setting up an experiment on MiNT is to configure the topology

by selecting the appropriate number of nodes. The only interface to a remote user

for selecting the nodes is MOVIE. It allows one to select the nodes that are present

in the testbed arena. The nodes show up as icons in the GUI. The user can configure

1This experiment was carried out from India over a 256 Kbps broadband connection with the

testbed setup at Stony Brook University, New York
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topology based on the link quality and signal strength among the different nodes.

In order to change topology, the remote user drags the icons in the interface and the

nodes are displaced physically in the real testbed, with simultaneous adjustments of

the link qualities. However, physical movement of the nodes is not instantaneous,

hence the user must wait for the change to happen. Often, due to nature of the

connectivity of the remote user, the updates of the link quality is bursty, thereby

giving the user a non-smooth view of the changes in the testbed. One remedy to

this could be providing the user with a ”real” view of the testbed by streaming the

data that is anyway collected by the tracking webcams. The images captured by the

tracking server could be fed to a remote user to provide her with a physical view of

the testbed, in addition to the GUI view.

The other problem that we often encountered is related to the movement of the

Roombas. When the Roomba is required to make an angular movement, it often

goes into a loop. Instead of stopping after performing a fixed number of angular

motions, it runs into an infinite circular motion. This appears to be a bug in the

firmware. The solution lies in using the newly released API which provides better

control over the movement instead of going through the Spitfire-based hack that we

have used for the current version of the node. It has been tested that use of the new

API for controlling Roomba movement is much more robust that the current design.

We plan to switch over to the new API in the next prototype.

Another requisite step in setting up an experiment is to configure the different

parameters on the nodes. For example, in pure simple one can configure the trans-

mit power, sensitivity threshold and other similar parameters. In order to configure

such parameters on MiNT, as a remote user one needs access to each node card pa-

rameters. Currently, MiNT does provide access to several card parameters through

MOVIE, but it is quite likely that it may not match the range of parameters that are

available in pure simulation. In such cases it might be required to extend the card
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APIs, or may be required to switch to different cards in order to get more extensive

APIs.



Chapter 6

Conclusions

This chapter summarizes the contributions and results of the dissertation. We con-

clude by presenting some future directions that can be pursued on this topic.

6.1 Summary of the Dissertation

The design of a miniaturized multi-hop wireless testbed, and tools for making it

usable, is the key focus of the dissertation. It is worth noting that pure simulation

forms the cornerstone of most research in the domain of wireless research. A sim-

ulation experiment can only be as accurate as the models that are used to capture

the behaviors of the different layers, like the physical layer, MAC layer, and so on.

Hence, lately there has been quite a few works that have started looking at the pit-

falls of pure simulation. It has been pointed out that often the inaccurate modeling

of the wireless physical layer, like the signal propagation and link error characteris-

tics, leads to inaccuracies in the results. It is possible to come up with more detailed

models for these layers, but at the cost of higher computation. The other alterna-

tive being embraced gradually across the community is to build multi-hop wireless
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testbeds, and validate the simulation results on these testbeds. But setting up a full-

fledged multi-hop wireless testbed with a tens of nodes is a non-trivial task. The

difficulty often stems from the fact that nodes has to be placed physically apart from

each other by a large distance in the order of hundreds of meters. Managing such a

spread out testbed is an administrative nightmare. Keeping this in mind, we came

up with a novel scheme of designing a miniaturized multi-hop wireless testbed.

We have shown that through use of radio signal attenuators it is possible to

scale down the communication distance between two wireless nodes. With this as

our building block, we created a multi-hop wireless testbed of 12 nodes in a space of

11 ft by 14 ft. Mobility is an important aspect of wireless experiments. In order to

make the nodes mobile, we have engineered the Roomba robotic vacuum cleaners

to act as our mobile platform. A lightweight embedded system from RouterBoard

is used as the computing platform and has been mounted on the Roomba. It is fitted

with four wireless interfaces, out of which one is dedicated for control and the

remaining three are used for experiments. The fidelity of this miniaturized setup

is tested against unmodified setup in the dissertation. It is shown that across each

layer in the network stack the consistency of the results are preserved compared to

the non-attenuated version of the testbed.

In order to have the testbed operational, some other solutions that are indispens-

able includes a mechanism to track the position of the nodes in the testbed arena,

ways to move the nodes around in the testbed arena without collision, and ability

to keep the testbed operational with minimal human intervention. We have de-

signed a vision-based tracking system by ceiling-mounting multiple webcams. The

webcam feeds are merged to compose the snapshot of the testbed. Simple image

processing techniques are used on the captured images to identify each node. We

show that with 7 colors it is possible to identify a large set of nodes. The technique

for collision-free movement of the nodes makes use of the periodic feeds from the
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tracking system to detect proximity of nodes. Based on the proximity of the nodes,

all nodes are stopped, and the nodes are allowed to move one by one. One down-

side of the method is that it is a greedy approach to move the nodes to their correct

location without much attention to the time taken. We show that with 6 nodes the

time taken to move the nodes around can go up to a few seconds. Finally, we want

to keep the testbed operational 24x7. This means that the batteries on which the

nodes are running must be recharged automatically without operator intervention.

The Roomba provides a auto-docking feature and we engineer that feature to auto-

matically dock the nodes for recharging.

Besides designing the infrastructure for setting up the multi-hop wireless

testbed, we have also designed and implemented a suite of software tools to be

used on MiNT. Since simulation is in vogue for a while now, we designed a hybrid

simulation technique that allows using the existing simulation scripts, with minimal

modification on the testbed, but can improve the accuracy of the results by elimi-

nating the use of models at the lower layers. In the hybrid simulation approach,

we replace the link, MAC and physical layer with the real implementations. All

packets are exchanged over the real wireless medium, thus eliminating the use of

models for the signal propagation or link error characteristics. We have shown that

the use of hybrid simulation can improve the accuracy of the results as compared

to the pure simulation results. Another tool designed to reduce the development

time for implementors of protocols on the testbed is the Fault Injection and Anal-

ysis Tool (FIAT). The tool injects user-defined faults at runtime based on scripts

written by the user, and flags errors if there is an anomalous behavior. We show the

intrusiveness of the tool in the context of protocol testing. The results indicate that

the use of the tool does not modify protocol behavior and can be used effectively in

debugging protocol implementations.

Another useful software component in MiNT is the MiNT Visualization and
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Control Interface (MOVIE) which is the front-end to the entire testbed. MOVIE

provides all the standard features to control the nodes in the testbed. Each node

is represented as an icon in MOVIE, and their respective positions in the testbed

is updated in real-time. Besides acting as the interface for the resources in the

testbed, MOVIE also acts as the control center for running experiments. It has new

interfaces compared to the existing GUIs through which one can rollback or pause

execution of hybrid simulation experiments.

Finally, we have used MiNT to execute one hybrid simulation experiment using

a wireless protocol, called Ad-Hoc Transport Protocol (ATP). This is a demonstra-

tion of how to use the testbed to execute simulation experiments that were tried

previously in the pure simulation mode. The experience of using the testbed re-

motely was also insightful for us. We also summarized the pros and cons of using

the testbed remotely, where we used MiNT over a broadband connection from India

while the set up was installed at the University site in Stony Brook.

6.2 Future Work

There are some immediate issues that are not addressed in this dissertation, which

forms a list of short-term goals for the future work. There are few other directions

which are more longer term. In this section, we summarize some of these future

directions.

A simple extension of the Fault Injection and Analysis Tool (FIAT) would be

to use it in conjunction with the hybrid simulation. The main mechanism of FIAT

is packet matching. The same packet matching technique can be built into hybrid

simulation by allowing all ns-2 packets to pass to a layer that inspects the packets

before dispatching it for transmission. The scripting mechanism for defining faults

and the action triggering mechanism can be used as it is. The details of how FIAT
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can be extended for hybrid simulation is explained further in Section 4.4.1.4.

Another feature of convenience that is lacking in MiNT at present is a physi-

cal view of the testbed. The only view of the testbed that the user gets is through

MOVIE, the graphical user interface for the testbed. MOVIE does show node loca-

tion in real-time by changing positions of node icons through periodic updates from

the testbed. However, when one is accessing over a slow network link, the updates

are often slow to come, and the user is left waiting to figure out if his changes took

place. It would be convenient to have a webcam interface that shows the live status

of the testbed. Since, webcam feeds are anyway captured in the testbed, the same

can be streamed to the user. The user may optionally choose to enable it.

Currently MiNT uses 12 nodes. The plan is to extend it into a bigger testbed

with larger number of nodes. This will certainly throw up issues with scaling and

robustness of the nodes. From our experiences with managing the testbed, we real-

ized that robustness of such a system put together using off-the-shelf components is

often a cause for concern. Therefore, as the testbed is extended into a larger setup,

there will be needs for better and more efficient interfaces for management of the

testbed. For example, ways to detect faults in each node, namely identifying which

network card is failing, could be useful tools to reduce downtime of the testbed.

As the testbed is extended, other means of tracking the nodes can also be ex-

plored. A mesh of IR receivers can be created on the floor of the testbed, and their

positions can be marked. If each node is now equipped with the IR emitter, then

the location of the node can be approximately determined. To get accurate posi-

tioning, this can be combined with the odometer reading that can be accessed using

the Roomba Serial Console Interface (SCI). The introduction of the Roomba Serial

Console Interface also opens up new possibilities for designing some of the subsys-

tems in the testbed. The details of Roomba SCI can be used for redesigning some

of the subsystems has been discussed in detail in Section 3.7.
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Steps to Assemble a MiNT Node

A.1 Hardware Components with Vendor List

The following list of equipments is a minimal set of items required to build a

MiNT node. This list assumes that the user is familiar with some common terms,

like soldering and the equipments necessary for performing the action, as well as,

some items, like Velcro, used for fastening two objects.

A.1.1 Wireless Computing Platform

The following are the necessary items for building the wireless computing platform.

1. RouterBoard RB-230

• Vendor: http://www.mikrotik.com

• Comments: RouterBoard 230 is a small form-factor embedded comput-

ing board with 266 MHz CPU on it. The board does not come with any

accessory, like the chassis which must be purchased separately from the

same vendor. Hence, one must buy a Compact Flash card which is used
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as the non-volatile storage for storing the OS images, and other appli-

cations. If the storage requirement is high, then it is necessary to add

a higher capacity disk on to the RouterBoard. The RouterBoard has a

IDE port. Additionally, it is required to buy the RAM separately.

2. RB-14 PCI Extension Board

• Vendor: http://www.mikrotik.com

• Comments: Since there is only 2 slots for mini-PCI cards on the RB-230

it is required to buy this PCI adapter that allows connecting 4 mini-PCI

cards to the RB-230. All the wireless cards we are using are mini-PCI

cards. Additionally, because of size and design limitations of the RB-

230 chassis, it is required to buy a PCI Riser card, RB-71 from the same

vendor.

3. 2.5” Hard Disk

• Vendor: Any standard disk manufacturer

• Comments: This is the same hard disks used in laptops. It is advisable

to check the Routerboard specification which clearly mentions the pin

count of the disk. The IDE cable also needs to purchased separately for

connecting the disk to the IDE connector on the board. Unfortunately,

the RB-230 chassis is not designed well to accomodate a disk, hence

requires some improvisation to place the disk inside the box.

4. Wireless Network Interface Cards

• Vendor: http://www.netgate.com
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• Comments: The network interfaces have to be fitted with antennas, and

that requires connectors. The connector types need to be carefully iden-

tified to make it easier to choose the antennas with connector types.

5. Fixed-point Attenuators

• Vendor: http://www.hdcom.com

• Comments: A point to remember while choosing the attenuators is

that they are available for different frequency range of 2.4 GHz, and

5.8 GHz. While using 802.11a enabled wireless NICs, it is required

to choose attenuators that can attenuate signals in the 5.8 GHz range.

Secondly, since we are using fixed attenuators, it is useful to purchase

multiple attenuators that can be combined to create various attenuation

levels.

6. Low-gain Antennas

• Vendor: http://www.netgate.com

• Comments: These are 2.4-5.8 GHz Omnidirectional Swivel Antenna

with cable and U.fl connector. With each choice of antenna careful at-

tention must be paid to the connector types. The cable connecting the

antenna to the wireless card should have the matching connector types to

avoid use of additional adapters in between, which also leads to leakage

of signal. In our design, we have the attenuators between the antenna

and the card connector.

7. Battery

• Vendor: Any portable laptop battery manufacturer
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• Comments: The tradeoffs in chooisng a battery is the size/weight of the

battery to battery lifetime before recharge. In our current setup, we are

using 118 Watt Hour Universal Li-Ion Laptop battery (NBMATE-118).

A.1.2 Mobility Setup

The following items are required for building the remote controlled mobility plat-

form.

1. Roomba Robotic Vacuum cleaner

• Vendor: htt://www.irobot.com

• Comments: These are standard Roomba vacuum cleaner available from

any consumer electronics shop at retail price of $249.

2. SpitFire Universal Remote Controller

• Vendor: http://www.SmartHomeUSA.com

• Comments: The Universal remote controller can be fitted with an exten-

sion cable to for pin-pointing the IR beam to specific directions. This

is a stick-on block with a very small size that is useful in the overall

assembly of a MiNT node.

3. Diodes

• Vendor: RadioShack

• Comments: Diodes with reasonably high rating as available in Ra-

dioShacks for hobby electronics is required for devising the common

charging circuitry of the Roomba battery and the laptop battery used for

charging the RouterBoard (refer Figure in 3.5.1).
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A.2 Assembly Instructions

This section covers the assembly instructions for putting together the items men-

tioned in Section A.1 for building a stand-alone MiNT node.

A.2.1 Hardware Assembly Instructions

A MiNT node is assembled in completely modular fashion. The steps involved in

assembling a node are: (a) assembly of the wireless computing box, (b) assembling

the mobility platform, including the universal remote controller device, (c) putting

modules (a) and (b) together.

A.2.1.1 Wireless Computing Platform Assembly Instructions

1. Open RouterBoard chassis and insert the memeory module on to the RB-230.

The CF card can also be inserted at this point if an image has already been

burnt into it for booting using that image. Otherwise, it is possible to insert

the CF card later. It is required to burn an image into the CF card and that

requires any available card reader.

2. The PCI riser card, RB-71 is placed on the PCI slot on the board. The PCI-to-

miniPCI adapter, RB-14 is connected to the riser card. Four miniPCI wireless

NICs are placed on to the slots on the RB-14. Before placing the cards in the

slots, it is advisable to attach the connectors securely (if needed it is better to

use clear tapes to secure the connector end that sits on the NIC).

3. The placement of the hard disk inside the chassis requires some improvisation

because the chassis is not designed for placing a hard disk. A suitable place to

attach the hard disk is on the smaller side of the box near the IDE connector

on the board. To secure the hard disk in the chassis, two small grooves are
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cut on the box, and for cooling purpose a hole is drilled on the body of the

chassis. Remember to put the jumpers on to the disk because the disk will

appear as the slave, and the CF card is the master.

4. 2 openings on each of the longer sides of the chassis is created to allow for

the antenna connectors to come out.

A.2.1.2 Mobility Platform Assembly Instructions

1. The Roomba battery charges when it places itself on the docking station.

While the Roomba battery we charge the laptop battery simultaneously. First,

figure out the positive and negative charging leads on the Roomba by mea-

suring the voltage using a multimeter. Next, solder a diode to the +ve lead

on the Roomba to prevent the Roomba from drawing current from the laptop

battery. Solder another wire to the -ve end. The other end of the +ve and

-ve cable goes to a coaxial charging tip that plugs into the laptop battery for

charging (refer Figure in 3.5.1

2. Since the laptop battery charges both the Routerboard and the Universal Re-

mote control device (Spitfire), therefore we need a Y-connector (available in

RadioShack). With proper charging tips connected to the other end of the

Y-connector, we can charge both the devices from the same battery.

3. For programming the universal remote control device, one spitfire must be

programmed manually using the remote control of the Roomba. The Roomba

codes for different actions are recorded in one Spitfire. We require all the

Spitfires to send out exactly same signals. In order to remove any perturbation

that may happen while training several Spitfires separately and manually, it is

advisable to use a chip programmer device to copy the learned code (stored
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Figure A.1: The top view of a MiNT node.

in EEPROM – ATMEL chip) onto the other Spitfires. Finally, the IR extender

is used to stick the IR emitting block to the Roombas IR receiver.

A.2.1.3 Putting It All Together

1. In order to place the entire setup on the Roomba, it is necessary to create a

two-layer rack. Choose a suitable stackable rack and fix it onto the Roomba

using screws. We use stackable wiremesh trays for the purpose. Ensure that

the placement of the trays does not hinder free movement of any part of the

Roomba, specially the head.

2. The battery and the Spitfire is placed on the lower rack. The Routerboard is

placed on the top rack The antennas are placed on four corners.

On assembly a MiNT node may look similar to the picture shown in Figure A.1

and Figure A.2.
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Figure A.2: The side view of a MiNT node.

A.2.2 Software Installation Tips

The RouterBoard RB-230 can be booted with a distribution, called the pebble dis-

tribution from http://www.nycwireless.com. The driver used for the wireless cards

is available from http://madwifi.org. The driver is specific for cards using Atheros

based chipset.

During the network setup, it is useful to allow one interface to acquire a DHCP

address so that the device is accessible as soon as it boots up.

A.3 Cost Break-up of a 12-node MiNT set-up

We present in Table A.1 a cost break-up for setting up a 12-node testbed of

MiNT nodes. This inlcudes the expenditure for setting up the 12 core nodes, in

addition to the other infrastructure costs, viz. the tracking system, and the control

node.
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Item Cost ($)

Wireless Node

RouterBoard RB-230 330

Wireless NICs and antennas 100x4 = 400

MiniPCI Adapter 65

Attenuators 40x6 = 240

Hard Disk 75

External Laptop Battery 170

Spitfire 135

Roomba 250

Total 1665

Tracking Server

Desktop PC 300x3=900

QuickCam 4000 100x6=600

Total 1500

Control Server

Wireless NICs and antennas 100x3 = 300

Desktop PC 300

Total 600

Table A.1: Cost breakup of MiNT infrastructure.
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Hybrid Simulation

B.1 Hybrid Simulation Script

We present a sample hybrid simulation script using ns-2.

set opt(mode) dsrtt

set opt(ctype) sum

set opt(settimer) 55

set opt(hello) 2

set opt(filename) test

set opt(start) 5.0

set opt(end) 25.0

set BgNodes 0

set BgFlows 0

proc getopt {argc argv} {

global opt

159
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lappend optlist cp nn seed sc stop tr x y mode settimer ctype

for {set i 0} {$i < $argc} {incr i} {

set arg [lindex $argv $i]

if {[string range $arg 0 0] != "-"} continue

set name [string range $arg 1 end]

set opt($name) [lindex $argv [expr $i+1]]

}

}

getopt $argc $argv

set ActiveFlows 90 ;# number of activeflows

source emul-header.tcl

#Define a ’finish’ procedure

proc finish {} {

global rec0 rec1 namtrace tracefd filename ns opt

global sink sink0 tnode

global ActiveFlows Tot script_start

#Close the output files

set now [$ns now]

set t [expr $now - $opt(start) - $script_start]

puts "Time : $t"

set sum 0

set count 0
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set avrg 0

set actbytes [$sink0 set bytes_]

set thruput [expr $actbytes/$t]

set thruputM [expr ($thruput * 8)/ 1000000.0 ]

lappend olist $thruputM

for { set i 0 } { $i<$Tot } { incr i } {

set totbytes($i) [$sink($i) set bytes_]

set tr($i) [expr $totbytes($i)/$t]

set tr_($i) [expr ($tr($i) * 8)/1000000.0]

lappend olist $tr_($i)

set avrg [expr $avrg + $tr_($i)]

if { $totbytes($i) != 0 } {

set sum [expr $sum + $totbytes($i)]

set avrg [expr $avrg + $tr_($i)]

incr count

}

}

if { $count != 0 } {

set avrg [expr $avrg/$count]

#set dsroh [expr $dsroh/(1.0*$sum)]

}

puts "Throughput : $olist \n"

close $tracefd

close $namtrace

exit 0

}
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####################################################

# Define a procedure which periodically records the

# bandwidth received by the traffic sinks.

proc record {} {

global rec0 rec1 totbytes0 totbytes1 bw0 bw1

global sink0

sink1

#Get an instance of the simulator

set ns [Simulator instance]

#Set time for recalling procedure

set time 1.0

#How many bytes have been received by the traffic sinks?

set bw0 [$sink0 set bytes_]

set bw1 [$sink1 set bytes_]

# Total number of bytes recived so far

set totbytes0 [expr $bw0 + $totbytes0]

set totbytes1 [expr $bw1 + $totbytes1]

#Get the current time

set now [$ns now]

#Calculate the bandwidth ( in bps ) and write it to the files
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puts $rec0 "$now \t [expr ($bw0*8)/($time*1e6)]"

puts $rec1 "$now \t [expr ($bw1*8)/($time*1e6)]"

#Reset the bytes_ values on the traffic sinks

$sink0 set bytes_ 0

$sink1 set bytes_ 0

puts "$now: $totbytes0 $bw0"

#Re-schedule the procedure

$ns after 1.00002 "record"

}

###########################################################

################### TRAFFIC GEN + SINK #####################

set tcp_win 4

proc create-udp-sink { node } {

global ns

set sink [new Agent/LossMonitor]

$ns attach-agent $node $sink

return $sink

}

#create a sink for TCP traffic

proc create-sink { node } {

global ns
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set sink [new Agent/TCPSink/DelAck]

$ns attach-agent $node $sink

return $sink

}

#attch FTP to TCP

proc attach-ftp-traffic { node sink } {

global ns

global tcp_win

# Create a TRANSPORT agent

# Attach it to the node

set source [new Agent/TCP/Reno]

$source set class_ 2

$source set window_ $tcp_win

$ns attach-agent $node $source

# Create a traffic agent

# Set its configuration parameters

set traffic [new Application/FTP]

# Attach traffic source to the traffic generator

$traffic attach-agent $source

#Connect the source and the sink
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$ns connect $source $sink

return $traffic

}

#attch CBR to UDP

proc attach-cbr-traffic { node sink size rate } {

global ns

# Create a TRANSPORT agent

# Attach it to the node

set source [new Agent/UDP]

$ns attach-agent $node $source

# Create a traffic agent

# Set its configuration parameters

set traffic [new Application/Traffic/CBR]

$traffic set packetSize_ $size

$traffic set rate_ $rate

# Attach traffic source to the traffic generator

$traffic attach-agent $source

#Connect the source and the sink

$ns connect $source $sink

return $traffic

}



B. HYBRID SIMULATION 166

#################################################

############## MAIN ###############

set totbytes0 0

set totbytes1 0

set bw0 0

set bw1 0

set conn_start_time 0

set Tot [expr $ActiveFlows]

set OldTot $Tot

set Tot $BgFlows

for { set i 0 } { $i<$Tot } { incr i} {

$ns at [expr $conn_start_time + $i*0.1] "$conn($i) start"

}

set script_start [expr $conn_start_time + $Tot*0.1]

for { set i 0 } { $i<$Tot } { incr i} {

$ns at [expr $script_start + $opt(end) + 1] "$conn($i) stop"

}

set conn_start_time 10

set tnode $node_(9)

set sink0 [ create-udp-sink $node_(3) ]

set conn0 [ attach-cbr-traffic $node_(9) $sink0 1200 2000K ]

set sink0 [ create-sink $node_(1) ]

set conn0 [ attach-ftp-traffic $node_(2) $sink0 ]
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set sink1 [ create-udp-sink $node_(1) ]

set conn1 [ attach-cbr-traffic $node_(8) $sink1 1200 2000K ]

set script_start $conn_start_time

$ns at [expr $conn_start_time + 0.0] "$ns update-display"

$ns at [expr $conn_start_time + 0.0] "$conn1 start"

$ns at [expr $conn_start_time + 4.0] "$conn1 stop"

$ns at [expr $conn_start_time + $opt(start)] "$conn0 start"

$ns at [expr $conn_start_time + $opt(end)] "finish"

#Run the simulation

$ns run

############## MAIN - END ###############
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The following is the emulation header that must be included in a typical ns-

2 script. This is the file emul-header.tcl

set val(ll) LL/LLEmu ;# link layer type

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 12 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 320

set val(y) 280

set filename emulation

remove-all-packet-headers

add-packet-header RTP TCP IP ARP LL

set ns [new Simulator]

$ns use-scheduler RealTime

set tracefd [open $filename.tr w]

$ns trace-all $tracefd

set namtrace [open $filename.nam w]

$ns namtrace-all-wireless $namtrace $val(x) $val(y)

create-god $val(nn)

set chan_1_ [new $val(chan)]
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$ns node-config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channel $chan_1_ \

-topoInstance $topo \

-agentTrace OFF \

-routerTrace OFF \

-macTrace OFF \

-movementTrace OFF \

set PhyNode $env(NSNODEID)

puts "This Node id = $PhyNode"

for {set i 0} {$i < $val(nn) } {incr i} {

if { $i == $PhyNode } {

$ns node-config -phyId $PhyNode

} else {

$ns node-config -phyId -1

}

set node_($i) [$ns node]

puts "SCRIPT: node $i Initialized"

}



Appendix C

Fault Injection and Analysis Tool

C.1 Fault Specification Language

The purpose of the fault specification interface is to simplify the way the test sce-

narios are defined in the fault injection and analysis tool. In order to do that we

have defined a Fault Specification Language that provides a rich set of primitives

to capture all network fault scenarios. The programming front-end is executed on a

central controller node, that parses the user-defined script and installs the relevant

data structures on the testbed nodes.

Here we give a brief description of the Fault Specification Language. A user

defines multiple fault injection and analysis experiments as scenarios she wants to

the protocol to run through, and these are executed as a batch job, making it easier

to parse through the results rather than the log files. Each scenario defined in FSL

is an unordered set of rules, that are condition >> action pairs. An action is

triggered whenever a condition is satisfied. The language provides primitives to

define conditions and actions.
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—————————————————————-

VAR SeqNoData, SeqNoAck;

FILTER TABLE

TCP data rt1 : (34 2 0x6000), (36 2 0x4000),

(38 4 SeqNoData), (47 1 0x10 0x10)

TCP syn : (34 2 0x6000), (36 2 0x4000),

(47 1 0x02 0x02)

END

NODE TABLE

node0 00:46:61:af:fe:23 192.168.1.1

node1 00:23:31:df:af:12 192.168.1.2

END

—————————————————————-

Figure C.1: Filter Table and Node Table: Examples of Packet Definitions and

Node Definitions. The packet definitions are used to distinguish different packets in

TCP protocol. The node definitions comprise the MAC address and the IP-address.

C.1.1 FSL Type Definitions

The goal of FSL is to define different network characteristics. The data types are

specific to this purpose. There are three data types, packet definition, node defini-

tion, and counter definition.

i. Packet Definition : Packet definition is used to specify the packet types that will

be monitored by FIAT’s fault injection and analysis layer. Each packet is

defined as a comma-separated list of tuples, where each tuple consists of the



C. FAULT INJECTION AND ANALYSIS TOOL 172

starting offset of the bytes to match, number of bytes to match, an optional bit

mask, and the hex pattern to look for. A packet definition is a logical AND-

ing of all the tuples. The optional bit mask gives the flexibility for defining

a match at bit-level. The list of all packet definitions precedes the scenario

definitions and is referred henceforth as the Filter Table. Defining packets

completely at compile time limits the expressiveness of FSL because often

certain fields are generated by the protocol during execution, e.g. sequence

number field of a TCP packet. Hence the language provides the freedom to

define a variable that is used as the dummy field in a packet definition at com-

pile time. Later at run-time ASSIGN FLTR primitive is used to instantiate

the dummy field. Figure C.1 shows a Filter Table where TCP data rt1 and

TCP ack rt1 are packet types that get defined at run time.

ii. Node Definition : Node definition gives the mapping from hostname to its MAC-

address and IP-address. These definitions help in matching source and desti-

nation nodes for the packets using the hostnames. The IP-address is needed

for initial set up of the data structures across all nodes. This list of node iden-

tifiers will be referred to as the Node Table. An example Node Table is shown

in Figure C.1.

iii. Counter Definition : A counter definition in FSL is used to count the events,

which is basically the send/receive event of a specific packet type. It can also

be used as a local variable on a node. In this case, the counter has to be

explicitly controlled by the user-specified instructions.

The syntax for defining a counter which counts an event is,

counter−name : packet type, sender node, receiver node, cntr initialization node

The value of the cntr initialization node determines whether the counter
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ASSIGN CNTR( counter id )

ENABLE CNTR( counter id )

DISABLE CNTR( counter id )

INCR CNTR( counter id, value )

DECR CNTR( counter id, value )

RESET CNTR( counter id )

SET CURTIME( counter id )

ELAPSED TIME( counter id )

Table C.1: Counter-Manipulation Primitives and Syntax

is maintained on the sender node (SEND) or the receiver node (RECV). For

example, if we have the counter definition as,

C1 : (TCP data, node1, node2, SEND)

then a counter identified by C1 will be maintained at node1 and it will count

the arrival of packets of type TCP data.

The syntax for defining a counter which is used as a variable for maintaining

states, like the current system time or the value of another counter is,

counter − name : cntr initialization node

In this case, the counter initialization node has to be mentioned explic-

itly and it must be defined in the Node Table. For example, the following

definition initializes a counter DIFF on node2.

DIFF : (node2)
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DROP( pkt type, node id, node id, SEND/RECV )

DELAY( pkt type, node id, node id, SEND/RECV, duration )

REORDER(pkt type, node id, node id, SEND/RECV, #pkts, order)

DUP( pkt type, node id, node id, SEND/RECV )

MODIFY( pkt type, node id, node id, SEND/RECV, pattern )

FAIL( node id )

STOP

FLAG ERR

Table C.2: Action-Specification Primitives and Syntax

C.1.2 FSL Operators

The language provides a set of primitives for manipulating the counters and to spec-

ify the faulty behaviors. The primitives for dealing with the counters are shown in

Table C.1 and the action primitives in Table C.2. The ENABLE CNTR sets the de-

fault value for the counter to 0, whereas the ASSIGN CNTR can be used to initialize

the counter to a particular integer value or the value of another counter.

C.1.3 FSL Semantics

The fault and analysis specifications in FSL are part of the scenario description.

The scenario definition is identified by some unique id. It comprises the counter

definitions and a list of condition and action pairs.

A term in FSL is a boolean relation between two counter values, or between a

counter value and an integer constant. FSL supports most of the C-like relational

operators, viz. >, <, ≥, ≤, =, 6=. A condition is a logical expression of terms.

The terms can be combined using relational operators, like AND,OR, NOT to

represent complex conditions. If the condition is left empty, it is by default set to
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be TRUE. For any scenario to begin the first condition needs to be empty. The

scenario execution can be stopped by an action primitive STOP. A scenario that

enters a control flow which may never be terminated by a STOP primitive, has to

be terminated by the system through the fall-back inactivity timeout mechanism,

which can be specified by the user as well. Thus if a condition is not evaluated or

an action is not executed within a maximum inactivity period, a scenario is termi-

nated. In summary, when a packet of a particular type is encountered, FIAT could

trigger a counter update, which in turn could trigger a term computation, leading

to a condition evaluation and eventually executing an action that can either be an

injected fault or another counter update.
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