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ABSTRACT

During a classroom session, an instructor performs several activi-
ties, such as writing on the board, speaking to the students, gestures
to explain a concept. A record of the time spent in each of these ac-
tivities could be valuable information for the instructors to virtually
observe their own style of instruction. It can help in identifying ac-
tivities that engage the students more, thereby enhancing teaching
effectiveness and efficiency. In this work, we present a preliminary
study on profiling multiple activities of an instructor in the class-
room using smartwatch sensor data. The proposed approach uses
data from available sensors in the smartwatch and builds a machine
learning model to predict the activities of an instructor. We use a
benchmark dataset that was collected in the wild to test out the
feasibility of classifying the activities. Different machine learning
models are used and the results are compared using multiple metrics
to show the efficacy of predictive modeling in automatic classroom
observation of instructors.
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1 INTRODUCTION

Methodology for evaluating instructor’s performance is an impor-
tant topic of classroom observational study, as it has direct effect on
students’ academic performance. Currently, instructor evaluation is
done mainly through student feedback based on a standard survey
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mechanism known as “Student’s Evaluating Teaching (SET)” [16].
However, there is possibility of automating this whole procedure,
if we can find correlation between instructor’s activity and stu-
dents’ attentiveness. There are already active researches going on
for finding student attentiveness [27]. We are focusing on tracking
instructor’s activities.

Human activity Recognition (HAR) is an emerging field of re-
search in pervasive computing [21]. It has applications in healthcare
[13], activity-based crowdsourcing and surveillance [17], targeted
advertising [5] etc. Many of the applications of HAR have been
surveyed recently [19] [1], from which we can get a summary of
the uses and applications of HAR.

Researches on the field of sensor based HAR is gaining momen-
tum with increasing use of smart devices like smart phone and smart
watch. These devices contain multiple sensors like accelerometer,
gyro sensor, microphone etc. Some other important reasons for
the popularity of sensor based activity recognition [2] are their
compact size, low-power requirement, low cost, non-intrusiveness
in contrary to the previously popular audio and video data based
activity recognition techniques [9].

There are some challenges while doing activity recognition. Same
activity may be performed by different persons in different manner.
Also, the same person can perform the activity in different manner
at different time based on the environment, physical or mental
condition. This is known as interclass variability. On the other
hand, there are similarities between different activities. For example,
walking and running has similarities between them. Then there is
class imbalance problem. It is a very well known issue in machine
learning. A person may do a specific activity rarely comparing
with other activities. For example, an instructor may sit down in
the classroom for a very little time on contrary to standing up
or writing in the board. As a result, it becomes difficult for the
machine learning algorithm to classify rare activities. Activities
can be performed simultaneously. For example, an instructor may
work on computer while he is sitting. This type of machine learning
problem is known as multi-label classification [24].

In this paper we have done a preliminary study on classifying
human activities based on sensor data of smartwatch. We have
used a benchmark dataset [25] which contains multi-label dataset
of human activities performed in the wild, that is the dataset was not
collected in any experimental setup. We have chosen this dataset
because the actual dataset that will be collected in future from
instructors will also be multi-label and will be collected in a non-
intrusive manner. We have tried to classify 4 activities: walking,
sitting, working in computer and standing.



We have tried both traditional approaches like binary relevance
[23] using Random Forest [14], Decision Tree [20], Logistic Regres-
sion [10] and also neural network based approaches like vanilla
neural network [28] and Long Short Term Memory (LSTM) [8]
based Recurrent Neural Network (RNN).

2 RELATED WORK

Most of the works related to human activity recognition are based
on either wearable sensors, audio or video.

[16] uses motion templates of instructor activities and describes
them through a Bag-of-Deep features (BoDF) representation. Deep
spatio-temporal features were extracted from motion templates and
then utilized to compile a visual vocabulary. After that the visual
vocabularies were quantized to optimize the learning model. The
activities given below were recognized with an accuracy of 85.41%
- Pointing towards the student, pointing towards board or screen,
idle, interacting, sitting, walking, using a mobile phone, and using a
laptop. For real time action recognition they planned to use explore
temporal action segmentation method [15], as instructors perform
multiple activities sequentially.

In [4] automatic analysis of teachers’ instructional strategies
were investigated from audio recordings collected in live classrooms.
Dataset was collected from classroom recordings of teachers’ au-
dio. Supervised machine learning models were used to train five
key instructional segments (Procedures and Directions, Supervised
Seatwork, Question and Answer, Small Group Work, and Lecture).
The models were validated independently of the teacher to increase
the generalizability of new teacher from the same data sample. The
five instructional segments above where identified with F1 scores
ranging from 0.64 to 0.78. The proposed model were able to detect
five instructional segments well above chance level. The system
used only low-level features derived only from teachers’ audio.

In [18] a proof of concept was designed using a methodology
based on the deep learning framework which reduces the diffi-
culty of the optimal feature selection problem significantly. A wrist
worn accelerometer was used to identify three basic movements
of the human forearm. The validation of the proposed model was
done by means of different pre-processing systems and noisy data
condition which was assessed using three possible methods. The
results showed that the model achieved an average recognition
rating of 99.8% which was more than on K-means clustering, linear
discriminant analysis and support vector machine. In this paper,
comparative analysis between conventional methods like Support
Vector Machine (SVM), Linear Discriminant Analysis (LDA), K-
means clustering and non-conventional method like Convolutional
Neural Network (CNN) were done using different preprocessing
steps and training with noisy data. As a result, they found out CNN
is very promising in handling the feature engineering process and
produces high accuracy if design parameters are defined in an effi-
cient way. Also the proposed model was able to classify daily living
activities in real-time and practical scenarios. The paper suggested
that the system could be extended towards increasing the number of
subjects and also towards people suffering from neurodegenerative
diseases.

In [22] 3 motion sensors (accelerometer, gyroscope and linear ac-
celeration sensor) were evaluated at both wrist and pocket positions

in order to recognize human activities. Using three classifiers, it was
shown that the combination of these two positions outperforms
the wrist position alone, mainly at smaller segmentation windows.
Since less-repetitive activities, such as smoking, eating, giving a
talk, and drinking coffee, cannot be recognized easily at smaller seg-
mentation windows, unlike repetitive activities eg: walking, jogging
and biking; 7 window sizes (2-30 s) on thirteen activities were used
and how increasing window size affects these various activities in
different ways were analyzed. It was found that combining the data
from the motion sensors from wrist and pocket positions improves
recognition for complex activities and this combination outper-
forms the wrist only postion’s performance in most cases. But the
recognition of complex activities is improved with increasing win-
dow size. Similar trends were seen for walking and using stairs.
However, only increasing the window is not enough for these activ-
ities, because the main increase in their recognition performance
comes from adding the gyroscope with the accelerometer, either at
the wrist or both wrist and pocket positions. Improvements were
seen due to increasing window size for simpler activities when their
reference performances were low. Though the sensor combinations
improved the recognition of complex activities at smaller window
sizes, the paper recommended to use a bigger window size for their
reliable recognition.

3 METHODOLOGY
In this paper, the dataset [25] we are using has two types of data:

e Feature extracted data
e Raw sensor data

The methodologies used are different for these two types of data.

3.1 Methodology for Feature Extracted Data

3.1.1  Problem Formulation. Let,D = (X;,Y;),1 <= i <= Ny which
represents the training dataset. Here, N; = number of training sam-
ples, X; = Features of i‘" training data, Y; = labels of i*" training
data. We define the features as, x = {x1, x2, x3, ..., fo} which is a
set of real values and where Ny = number of features. We define
the labels as, y = {y1,y2, y3, ..., YN, }, which is a set of binary values
and where N; = number of classes (activities).

For an unseen instance x = {xl, X2y X3y +eny fo}, our target is to
build a classifier h(.) which predicts y = {y1,y2,y3,....yn, } as a
vector of labels for x.

3.1.2 Data Resizing. There are many features and labels in the
dataset, but as our context is to detect activities of instructor in a
classroom using smartwatch sensors, we selected only the relevant
ones. In this paper, we worked only with the accelerometer data.
For the aforementioned reasons, the first thing we had to do is to
get rid of the rows in the dataset that are not relevant to the selected
activities. The second step was to remove rows, which did not have
any accelerometer data.

3.1.3 Feature Scaling. Feature scaling or normalization is a very
important step in data preprocessing. It is used to normalize the
value range of features to a common scale. It is essential when
features have different ranges. Otherwise, the model may skew
towards specific features only because of it’s value range. We have



Figure 1: Methodology for Feature Extracted Dataset

used min max scaling method.

, _ x—min(x)

max(x) — min(x)

where x’ is the normalized value and x is the actual value.

3.1.4 Dataset Splitting. We primarily split the dataset into training
and test dataset with a ratio of 70:30. The training dataset is used for
training the models. The models were tested using the test dataset.
For the neural network, we also used validation dataset, for tuning
hyper parameters. We took 30% of the training dataset as validation
dataset.

3.1.5 Handling Data Imbalance. When the instances of one class
outnumbers the instances of another class, it is called an imbalanced
dataset [6]. The dataset used in this paper is highly imbalanced.
Implementing machine learning models using imbalanced dataset is
always challenging [12]. There are multiple methods for overcom-
ing the affect of data imbalance [11]. We have used an algorithmic
level approach known as Cost-sensitive learning, that is to define
fixed and unequal misclassification costs between classes [3]. We
adjusted the weights in such a way that it is inversely proportional
to class frequencies in the input data.

. n
Wi = k x ni
where w; is the weight to class i, n is the number of observations,
n; is the number of observations in class i and k is the total num-
ber of classes. The training settings is summarized in Figure 1. We
have used a problem transformation method for multi label binary
classification known as Binary Relevance, which essentially con-
siders the prediction of each class as an independent classification
problem. After transforming the problem, we tried 3 algorithms for
classification and compared them. These 3 estimators are Logistic
Regression, Decision Tree and Random Forest.

3.2 Methodology for Raw Data

In this method, we have tried to train a Recurrent Neural Network
(RNN) to learn sequence of sensor data.
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Figure 2: Structure of LSTM Network 1
Input Sequence LSTM LSTM | Dense .
25 timestep ——— >| 100 EESTM 25 PN — Output
= units = = | [class1,class2,class3,class4]
3 features units units units

Figure 3: Structure of LSTM Network 2

3.2.1  Problem Formulation. Let, D = (S;,Y;),1 <= i <= Ny which
represents the training dataset. Here, N; = number of training
samples, S; = jth sequence of training data, Y; = labels of ith se-
quence. Each sequence S; is a Ng X Ny dimensional vector, where
Ns = sequence length and Ny = number of features. We define the
labels for each sequence as, y = {y1, 42, y3, ..., yn, }, Which is a set
of binary values and where N; = number of classes (activities).

For an unseen sequence instance x = {x1, X2, x3, ..., XN, }, our tar-
getis to build a classifier h(.) which predicts y = {y1, y2,y3, ..., yn, }
as a vector of labels for x.

3.2.2  Sequence Creation and Labeling. For sequence learning, at
first we needed to pre-process the raw data to create sequences. In
this paper, sequence size of 25 is used. Raw accelerometer data was
recorded in 25Hz frequency. So, each sequence represents 1 seconds
of data. We first found out the labels for each user’s raw data from
the processed dataset’s timestamp. Then saved the sequences and
labels in a compressed format, so that we can load it easily later. The
compression task was important, as the actual raw accelerometer
data size was around 10GB.

3.2.3 Dataset splitting. The sequence data is split into training and
test set in 70:30 ratio. The training set is used to train the model.
30% of the training data is used for validating the dataset and tune
the hyper parameters accordingly. Finally, the test dataset is used
to evaluate the model.

3.24 Training Settings. LSTM (Long Short Term Memory) based
Recurrent Neural Network (RNN) is used for the sequence learning
approach. The raw sensor data are multivariate time series data. So,
we can describe an activity by a sequence of raw sensor data.

2 LSTM based models are used. One with single LSTM layer
and another one using multiple LSTM layers. For both models, the
output layer is a fully connected neural network with 4 neurons,
each of which outputs 1 if the sample sequence is classified as the
corresponding class, otherwise it outputs 0.

Activation Function: As the output is 0 or 1 for each class, sigmoid
activation function is used,

1

X)= ———
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Loss Function: The models are compiled using binary cross en-
tropy loss function, because this is a multi-label classification and
we have to treat each output label independently.

N
Ly 9) = - D {ylogd + (1 - y)log(1 - )}
i=0

where § is the predicted value, y is the actual value and N is the
number of samples. Binary crossentropy measures how far away
from the true value (which is either 0 or 1) the prediction is for each
of the classes and then averages these class-wise errors to obtain
the final loss. However, we also use another version of the same
formula which takes class imbalance into account.

The training settings are summarized in Figure 2 and Figure 3.

3.3 Experiments and Results

3.3.1 Dataset. The dataset used here was presented in this paper
[25]. It contains over 300k sensor data with context labels from
60 subjects. The data were collected in-the-wild, meaning, it con-
tains data which were recorded using: 1) Naturally used devices, 2)
Unconstrained device placement, 3) Natural environment, 4) Natu-
ral behavioral content. The dataset contains both smartwatch and
smartphone sensors’ data. However, we have used only smartwatch
accelerometer data for this paper. Tri-axial acceleration from the
watch was recorded at 25Hz for around 20sec in each minute. The
smartwatch data is divided into 2 parts. One is the processed data
and the other is the raw data. The smartwatch accelerometer data
contains data from 56 users and the processed dataset contains
210,716 examples. The whole dataset is multi-labeled and contains
51 labels. However, we only took portion of the dataset which cor-
responds to the 4 activities that we have worked on in this paper.
Every entry in the processed dataset was labeled using One Hot
Encoding method. For example, label "1010" means the user was
doing the 1st and 3rd activities when the data was recorded.

3.3.2  Metrics. We measured different metrics. The most important
of them are the F1 score, Area under curve (AUC) and the Balanced
Accuracy. There are few reasons behind it. First of all, classification
accuracy is a misleading metric in imbalanced dataset. For example,
if a dataset contains only 10% positive examples, a classifier that
predicts negative all the time will have a high accuracy of 90%,

but will be useless. Sensitivity (recall) refers to the individual class

] T .y T,
) = —In_
accuracy and is calculated as R = T +F, and specificity S = T.+F,

are important measures. F1 score is one of the recommended metrics
to be used for unbalanced data.

2PR
F1=
P+R
.. T iy
where precision P = TPTPFP' Tp = true positives, Tn = true neg-

atives, Fp = false positives and F,, = false negatives. However,
precision and F1 are less fitting in this case, since they are very
sensitive to how rare labels are. Balanced accuracy, BA = 0.5 X
(recall + specificity), does not suffer from the aforementioned is-
sues. Area under curve (AUC) is very popular specially in case of
binary classification technique [7]. So, as for our case the problem is
multi-class and multi-label, we have also calculated average AUC.

Table 1: Results of Processed Dataset (Unweighted)

(a) Linear Regression (b) Decision Tree

Label | BA AUC F1  Label | BA AUC F1

Sit 0.65 0.72 0.55 Sit 0.69 0.69 0.63
Walk | 0.60 0.84 0.32 Walk | 0.64 0.64 031
CW | 050 0.69 0.00 CW | 0.63 0.63 0.33
Stand | 0.50 0.70 0.00 Stand | 0.60 0.60 0.28

AVG | 056 074 022  AVG | 0.64 064 039

(c) Random Forest (d) Neural Network
Label | BA AUC F1  Label | BA AUC F1

Sit 0.77 0.86 0.73 Sit 0.72  0.80 0.66
Walk | 0.63 087 0.40 Walk | 0.60 0.86 0.32
CW | 057 084 0.24 CW 1051 0.78 0.05
Stand | 0.54 0.82 0.15 Stand | 0.51 0.78  0.02

AVG | 063 085 0.38 AVG | 059 081 0.26

Table 2: Results of Raw Dataset (Unweighted)

(a) LSTM 1 (b) LSTM 2
Label | BA AUC F1  Label | BA AUC F1

Sit 0.71 0.78 0.66 Sit 0.71  0.79 0.67
Walk | 0.55 0.83 0.17 Walk | 0.55 0.83 0.2
CW | 052 0.76 0.08 CW | 052 0.77 0.09
Stand | 0.52 0.74 0.06 Stand | 0.52 0.74 0.07

AVG | 058 078 0.24 AVG | 058 0.79 0.26

3.3.3  Experiments on Processed Dataset. In Table 1(a), 1(b), 1(c), and
1(d) - F1 score, Balanced Accuracy (BA), Area Under Curve (AUC) is
shown as performance metrics for processed dataset without weight
adjustment. From the results here, we can see that according to
average Balanced Accuracy, the 4 activities are best classified by
Decision Tree, but Random forest is also a very close competitor.
According to average AUC and average F1 score, all the activities
are best classified using Random Forest in the unweighted dataset.

3.3.4 Experiments on Raw Dataset. In Table 2(a), and 2(b) - F1 score,
Balanced Accuracy (BA), Area Under Curve (AUC) of Raw dataset
without weight adjustment is shown. From the results, we can
see that according to all the metrics (Average Balanced Accuracy,
Average AUC, Average F1 score) the 2nd multi-layered LSTM model
performs slightly better than the first one. Moreover, The cell count
in the 1st model is 2 times the cell count in the 2nd model. If we
increase the cell count in the 2nd model, it may perform much
better. So, we can say that multilayered model performs better than
single layered model.

3.3.5 Effect of Class Weights Adjustment. From Table 3(a), 3(b), 3(c)
and 3(d), we can see that according to average Balanced Accuracy,
Linear regression does the best to classify the activities. According



Table 3: Results of Processed Dataset (Weighted)

(a) Linear Regression (b) Decision Tree

Label | BA AUC F1  Label | BA AUC F1

Sit 0.67 0.72 0.62 Sit 0.69 0.69 0.63
Walk | 0.76 0.84 0.30 Walk | 0.63 0.63 031
CW | 0.64 069 028 CW | 0.62 0.62 033
Stand | 0.66 0.71 0.30 Stand | 0.60 0.60 0.28

AVG | 0.66 071 030  AVG | 0.64 064 0.39

(c) Random Forest (d) Neural Network
Label | BA AUC F1  Label | BA AUC F1

Sit 0.77 086 0.72 Sit 0.73 0.80 0.68
Walk | 0.61 0.87 0.34 Walk | 0.61 0.86 0.34
CWwW | 057 085 0.24 CW | 051 0.79 0.04
Stand | 0.54 0.82 0.16 Stand | 0.51 0.76 0.04

AVG | 062 085 037 AVG | 059 0380 0.28

Table 4: Results of Raw Dataset (Weighted)

(2) LSTM 1 (b) LSTM 2

Label | BA AUC F1

Sit 0.71 0.78 0.68 Sit 0.72 079 0.69
Walk | 0.75 0.84 0.27 Walk | 0.76 0.84 0.27
CW | 0.69 0.76 033 CW | 0.70 0.77 0.33
Stand | 0.68 0.75 0.32 Stand | 0.69 0.76  0.32

AVG | 072 079 0.40

Label | BA AUC F1

AVG | 0.71 0.78 0.40

to average AUC, Random Forest does the best. According to average
F1 score, Decision Tree performs better. If we take the average of
all the scores, Random Forest outperforms the other ones.

From the results in Table 4(a) and 4(b), we can see that for weight
adjusted raw dataset, according to the metrics (Average Balanced
Accuracy, Average AUC), the 2nd multi-layered LSTM model per-
forms better than the single-layered LSTM model. According to
average F1 score, the performances of both the models are similar.
However, the 2nd model contains lesser cells than the 1st model.
With the increase of cell number, it may perform even better. So,
overall we can say that mult-layered LSTM models perform better
than the single-layered LSTM models.

Now, comparing same methods we see that, weight adjustment
is effecting the processed dataset very slightly. However, it has a
great impact on the raw dataset. Specially, the Balanced Accuracy
and F1 scores have a positive impact after adjusting the weights.
For the 1st LSTM model, the BA increases from .57 to .71, which
is around 14% increase. Also, the F1 score increases from .25 to .40
(around 15% increase) for this model. Similarly, for the 2nd LSTM
model the BA increases from .58 to .72 (around 14% increase) after
weight adjustment. The F1 score goes from 0.26 to 0.40 (around 14%
increase) after weight adjustment.

4 DISCUSSION

We generated the activity prediction models based on two classes
of techniques - one that requires extensive feature selection and
engineering, such as random forest, and the second approach is
using Recurrent Neural Network (RNN), where the features are dis-
covered from the raw data. Although Random Forest performs well,
we would recommend to use the RNN for the ease of use for this
specific problem. The disadvantage of using RNNs is that the raw
dataset is an order of magnitude larger than the processed feature
set provided as input to generate the Random Forest. Therefore,
training a RNN is significantly more costly in terms of resource and
time. Note that the dataset has imbalance with respect to sample
count per label type. We observed that assigning class weights has
a positive impact on the performance of a machine learning model.

In [25], 5-fold performance evaluation (BA) was done in this same
dataset. In their paper, the results using only watch accelerometer
data for classifying Sitting, Walking, Computer work and Standing
are respectively 0.68, 0.75, 0.62, and 0.67. Logistic Regression was
used as the classification technique. In [26], Multi Layer Perceptron
(MLP) was used with multiple layers on the same dataset. They got
an accuracy of 0.75, 0.8, 0.72, 0.63 for the same activities. In our
paper, using LSTM we were able to achieve BA of 0.72, 0.75, 0.69,
0.68 for those activities.

This dataset helped us to investigate whether certain human
activities, commonly performed by an instructor in a classroom, can
be modeled and predicted. However, the dataset was not collected
in a classroom setting. We believe since the data source, which are
the sensors in a smartwatch with the instructor, remains the same
as that of the data here, therefore, the findings in this paper will
remain valid in classroom setting.

5 CONCLUSION AND FUTURE WORKS

In this paper, we have presented both traditional and neural network
based models to classify 4 different activities (sit, walk, computer
work, stand) in multi-label learning settings with class imbalance
problem. The proposed system shows promising results on activity
recognition using smartwatch accelerometer data. As a part of our
contributions, we have presented different metrics scores (AUC,
BA, F1) for classifying 4 activities. We have also tried to solve 3
open problems described in [25], which are time series modeling,
multi-task modeling and feature learning.

A lot of future work can be done based on this research. More
activities can be included. The proposed models can be tested on
actual smartwatch data collected from instructors inside classroom.
Currently, only accelerometer data is used. Gyro sensor and mi-
crophone audio data can be collected from smartwatch and sensor
fusion can be done to classify more activities of instructors like
talking, writing etc.
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