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Abstract—Smartphones provide the capability to perform in-situ sampling of human behavior using Experience Sampling Method
(ESM). Designing an ESM schedule involves probing the user repeatedly at suitable moments to collect self-reports. Timely probe
generation to collect high fidelity user responses while keeping probing rate low is challenging. In mobile-based ESM, timeliness of the
probe is also impacted by user’s availability to respond to self-report request. Thus, a good ESM design must consider - probing
frequency, timely self-report collection, and notifying at opportune moment to ensure high response quality. We propose a two-phase
ESM design, where the first phase (a) balances between probing frequency and self-report timeliness, and (b) in parallel, constructs a
predictive model to identify opportune probing moments. The second phase uses this model to further improve response quality by
eliminating inopportune probes. We use typing-based emotion detection in smartphone as a case study to validate proposed ESM
design. Our results demonstrate that it reduces probing rate by 64%, samples self-reports timely by reducing elapsed time between
self-report collection, and event trigger by 9% while detecting inopportune moments with an average accuracy of 89%. These design
choices improve the response quality, as manifested by 96% valid response collection and a maximum improvement of 24% in emotion
classification accuracy.
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1 INTRODUCTION

The Experience Sampling Method (ESM) is a widely
used tool in psychology and behavioral research for in-situ
sampling of human behavior, thoughts and feelings [1], [2].
Ubiquitous use of smartphones and wearable devices helps
in more flexible design of ESM, aptly termed as mobile
ESM (mESM) [3], [4]. It allows collection of rich contextual
information along with behavioral data at an unprecedented
scale and granularity, which paves the application of mESM
in different domains like personal wellbeing [5], automatic
emotion detection [6], [7], social and behavioral studies [8].

Responding to survey requests in ESM is repetitive and
can be burdensome, which affects response quality in multiple
ways. For instance, a high probing frequency may cause user
fatigue, which makes the users inattentive and respond
inaccurately, or simply ignore the probes, thereby impacting
label quality [9]. Similarly, if the response is not collected
timely (e.g. if there is a long time interval between event
occurrence and self-report collection), the self-report may
suffer from recall bias [10]. Even when probes are generated
at appropriate time without high frequency, it may still
be possible that a probe request triggered at a time when
the user cannot pay attention i.e. she is not interruptible
[11]. Thus, a mESM design must consider probing frequency,
timeliness and user interruptibility together to obtain high
quality survey responses.

In state-of-the-art literature, multiple studies attempted
to address this challenge by considering notification sched-
ule and interruptibility, two key parameters in mESM de-
sign [12]. Typically the notification schedules are policy-
based - the policy determined by time, or specific events.
Time-driven policies are used to probe at fixed interval

often aiming to reduce the probing frequency [6], [8], while
event-driven policies aim to collect self-reports timely by
probing as soon as the event occurs [13], [14]. Reducing
probe frequency while triggering a probe on every event
is inherently contradictory. Hence hybrid schedules are
designed that leverage policy-based schedules to balance
between probing frequency and timely self-report collection
[15] . In spite of these advanced schedules, it is not guar-
anteed that probes are generated at interruptible moments
by policy-based schedules. Studies have also investigated
interruptibility-aware designs in smartphone notifications
[16], [17] and indicated that suitable engagement moments
can be detected based on mobile sensors details, contex-
tual and demographic information [18], [19]. Recent studies
related to mobile notification demonstrated that carefully
selected probing moments lead to better engagement and
improved response quality [20], [21], [22].

ESM designs are more stringent in cognitive demand
compared to interruptibility aware notifications since a user
must actively recall and record, unlike reading an infor-
mation. Moreover, in case of ESM design, the undergoing
user study plays an important role [23]. For example, an
appropriate moment to prompt user for a health related
intervention is unlikely to be the same as one to notify
her of a social network or email update. So, the probing
moments in ESM design should not only be opportune, but
also relevant with respect to the ongoing study. In addition,
use of sensor details and contextual information may not
be viable in ESM design. Tracking additional sensor and
contextual details may not be resource-efficient, also user
may not agree to allow to track her senor data (like location
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details, call logs) for privacy reasons [24]. As a result, the
opportune moments for probing should be learned from the
user inputs itself.

In this paper, we overcome these limitations in steps
by proposing a two-phase ESM design. In first phase, we
identify relevant probing moments based on the user study
and in second phase, we implement a machine learning
model so that the probing is done at opportune moments
only. We focus on balancing probing frequency and timeliness
in phase-1, by deploying a policy-based ESM schedule
named as LIHF (Low-Interference-High-Fidelity) schedule.
In parallel, based on user inputs, we construct a machine
learning model to detect if the current probing moment is
opportune or not. In phase-2, we operationalize this model,
which automatically identifies and skips probing at inoppor-
tune moments. As the model becomes operational, it can
improve response quality not only by collecting responses
at appropriate moments, but also eliminating the potentially
annoying probes (thereby increasing the fraction of valid
probes). Thus the proposed design optimizes probing rate,
self-report timeliness and user interruptibility together for
better response quality, both in terms of number of valid
responses and accuracy of these responses.

We use the smartphone based emotion detection, which
extensively uses ESM for survey report collection [6], [7],
as a case study to evaluate the proposed ESM framework.
We design, implement and deploy a typing based emotion
detection application TapSense for Android platform to de-
termine multiple emotions (happy, sad, stressed, relaxed) and
validate the efficacy of the proposed method in a 3-week
study involving 22 participants. Our major experimental
results demonstrate that ESM schedule designed based on
proposed framework (a) reduces the probing frequency
by 64% (b) collects the self-reports more timely with a
reduction of 9% in average elapsed time between self-report
sampling and event occurrence (c) detects inopportune mo-
ments with an average accuracy (AUCROC) of 89%. The
proposed design also helps to improve survey response
quality by (a) improving valid response rate to 96% and
(b) yielding a maximum improvement of 24% in emotion
classification accuracy (AUCROC) over off-the-shelf ESM
schedules, while achieving an average emotion classification
accuracy (AUCROC) of 78%.

In summary, the key contributions of this paper are:
• A two-phase ESM schedule design method, which bal-

ances survey probe frequency and timeliness of probe
generation, while ensuring that the generated probe will
be at an opportune moment for the user. The first phase
implements a hybrid schedule, LIHF ESM, to balance
between probing rate and timely self-report collection.
It also collects data from user responses to construct a
machine learning model to predict inopportune probing
moments. In the second phase, the model is used to ensure
probing only at opportune moments.

• A case study of the proposed ESM design in typing-
based emotion detection in smartphone, which reveals the
efficacy of the proposed method in terms of probing rate,
timely self-report collection, and response quality.

The rest of the paper is organized as follows. We present
related literature in Section 2. We describe the preliminary
field study in Section 3 which leads to the design of the

proposed approach in Section 4. We present a case study
of typing based emotion detection in Section 5. We discuss
the design of TapSense along with study procedure and
participants details in Section 6. We analyze the collected
dataset in Section 7. Experimental evaluation, qualitative
assessment and limitations are presented in Section 8. We
conclude in Section 9.

2 RELATED WORK

In this section, first we discuss the use of mobile device as a
data collection platform for ESM studies. Next, we present
literature on notification schedules that balance probing
frequency and timely self-report collection, followed by user
interruptibility aware ESM designs.

2.1 Smartphone-driven Data Collection

Smartphones can non-intrusively collect sensor information,
application usage data, user’s contextual information. For
example, Device Analyzer collects approximately 300 event
details related to telephony, WiFi network, application us-
age, data usage, sensors etc., and use the same to infer
details like mobility pattern, communication trend, WiFi
network availability, battery usage and the reliability of
smartphone for long-term data collection [25]. The UbiqLog
framework was designed to trace life-log events by config-
uring or adding new sensor details [26]. Multiple studies
have explored the collected sensor data and inferred user’s
context [27], [28], [29]. For example, Ferreira et al. designed
open-source platform AWARE to capture, infer and gen-
erate context based on sensor data in mobile devices [28].
Similarly, a middleware platform ACE was designed for
continuous context sensing in mobile platform by reducing
the sensing cost [30]. The dependency on cloud platform for
context determinations has been reduced by designing Mo-
bileMiner, which identifies frequently co-occurring contexts
on mobile device [29].

All these works establish the suitability of smartphone
as a data collection platform, which helps to obtain context
information from logged data. While these frameworks help
in automatic logging of sensor data, self-reports related to
various aspects of human life (like emotion) still require
explicit input from the user.

2.2 Balancing Probing Rate and Self-report Timeliness

In ESM studies, the participant burden mainly arises from
answering survey questions repeatedly. With the prolifer-
ation of ubiquitous mobile devices, like smartphones, and
other wearable devices, more intelligent and less intrusive
survey schedules (e.g. limiting the maximum number of
probes, increasing the gap between two consecutive probes)
have been designed. Several open source software plat-
forms, like ESP [31], MyExperience [13], PsychLog [32], Per-
sonal Analytics Companion [33], are available on different
mobile computing platforms to cater to ESM experiments.

Time-based, event-based schedules are most commonly
used ESM schedules [10]. Time-based approaches aim to
reduce probing rate, while event-driven ones try to collect
self-report timely. However, time based approaches do not
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guarantee fidelity of the labels as the response may attenu-
ate by the time user records the label. Similarly, although
event-based ESMs collect labels close to the events but
if the number of events monitored are high in number,
there will be large number of probes, resulting into user
annoyance. Recently, hybrid ESM schedules are designed
combining time-based and event-based ones to trade-off
between probing rate and self-report timeliness [15].

2.3 Maintaining Response Quality via Interruptibility-
aware Designs
Recent advancements in interruptibility-aware notification
management revealed that users receive many probes in
a day and all of these are not equally important [34].
Different solutions were proposed to regulate the probing
on mobile devices, which primarily leverage on contextual
information to infer opportune moments [20], [35]. Ho et
al. indicated that interruptions may be considered more
positively if placed between two physical activities like
sitting and walking [35]. Similarly, Fischer et al. showed that
participants react faster to probes when they are delivered
immediately after completing a task on mobile such as after
finishing a phone call or reading a text message [20]. In
[36], authors showed that features like last survey response,
phone’s ringer mode and user’s proximity to the screen can
be used to predict whether an intimation will be seen by
the recipient within a few minutes. Leveraging on these
findings, intelligent notification strategies were developed,
which resulted in higher compliance rate and improved
response quality [21], [22].

Although these findings indicate that off-the-shelf noti-
fication management approaches can be applied in mobile
based ESM design, in reality they may not be. The primary
reason is that these approaches use different contextual and
sensor details, which may not be available during an ESM
design because of resource overhead and privacy issue.
Moreover, ESM design also depends on underlying user
study [23]. As a result, the opportune probing moments are
to be extracted based on the target user study.

Schedule Probing rate Timeliness Opportune probing
Time-based
(e.g. [6], [8]) X 7 7

Event-based
(e.g. [13], [14]) 7 X 7

Hybrid
(e.g. [15]) X X 7

Interruptibility-aware
(e.g. [16], [17], [20], [21]) 7 7 X

Proposed two-phase ESM X X X

TABLE 1: Summarization of the related works reveals the scope
of optimizing probing rate, self-report timeliness and probing
at opportune moments together in mobile-based ESM design.

We summarize the findings from the literature survey
in Table 1. Comparison of different ESM schedule design
reveals the scope of optimizing probing rate, self-report
timeliness and probing at opportune moments for better
survey response quality in mobile-based ESM design, which
is addressed in this work.

3 MOTIVATIONAL STUDY

The objective of this pilot study is to find the limitations of
policy-based ESMs in terms of probing rate and timely self-

report collection. It also aims to identify how participants
respond if probes are issued frequently without considering
user attention.

3.1 Experiment Apparatus

In order to conduct this study, we design a virtual keyboard
for Android platform and use it as experiment apparatus.
We also design a emotion self-report collection UI. We show
the keyboard and the self-report collection interface in Fig.
1, 2 respectively. In the self-report collection UI, we include
the No Response option so that users can skip self-reports if
the popup appears at an inopportune moment.

Fig. 1: Smartphone keyboard
used in the experiment to capture
users’ typing activity.

Fig. 2: User Interface for
collecting emotion self-
reports.

3.2 Study Procedure

We conduct two studies as described below. In the first
study, we deploy a time-based ESM policy [10], which
collects emotion self-reports at every 3 hour interval. In
the second study, we collect the emotion self-reports using
an event-based ESM policy [10], which considers switching
from a typing based application as the event and issues
probes at the occurrence of every such event.

We installed the ESM application on smartphones of 12
university students (aged between 18 − 24 years, 10 male,
2 female) and recorded their emotion labels and typing
patterns for 2 weeks using each ESM policy. We instructed
the users to make the study keyboard as the default one and
asked them to record their emotion in the survey popup. We
also instructed them to select No Response option and not to
discard the pop-up by pressing the back button if they feel
that the popup appeared at an inopportune moment.

3.3 Lessons Learnt

We record the response rate of both the policy-based ap-
proaches before comparing them. We note ≈ 98% valid
self-reports (2% No Response) and ≈ 82% valid self-reports
(18% No Response) for time-based and event-based sched-
ules respectively. Both of these policy-based schedules are
compared in terms of (a) average number of probes issued
per user (b) average elapsed time between typing comple-
tion and self-report collection and (c) the percentage of No
Response labels. We summarize these results in Fig. 3.

We observe that in case of event-based policy, a high
number of probes are issued in comparison to time-based
policy, while the event-based policy collects the self-reports
more close to the event than time-based one. We also
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Fig. 3: Comparing time-based and event-based ESM schedule in terms of (a) average number of probes issued per user (b) average
elapsed time between typing completion and self-report collection and (c) percentage of No Response labels for every user

observe that since event-based policy issues a very high
number of probes, a large fraction (18%) of these probes
are marked as No Response.

The aforesaid studies reveal that there is a trade off
between probing frequency and timely self-report collection
in case of policy-based ESM schedules. They also reveal that
if the probes are issued at very high frequency, they are not
useful and may be skipped by the users. These observations
indicate the need to balance between probing rate and
timely self-report collection and regulate the probing at
unfavorable moments. These observations motivate us to
design an ESM schedule to address these issues together.

4 PROPOSED ESM DESIGN APPROACH

The proposed ESM design is divided into two phases. We
show both these phases in Fig. 4. The first phase is driven
by a policy based schedule, which issues probes based on
predefined rules. The objective of this phase is to reduce
the probing rate and ensure that self-reports are collected
timely. Side by side, this phase provides the opportunity
to learn the inopportune moments from user responses. The
survey response collection UI is provided with a No Response
option so that the user can indicate that the probe appeared
at an inopportune moment. Based on the user reported
labels, a machine learning model is constructed to detect the
inopportune moments automatically. Finally, in the second
phase, the probes generated based on the policy-based mod-
ule are passed to this inopportune moment detection model.
Subsequently, the model decides if the current moment is
inopportune, and accordingly the probing is skipped (or
issued, otherwise) to the user. Next, we describe each of
these phases in detail.

4.1 Phase-1: Hybrid Policy to Balance Probing Rate
and Timeliness
In this phase, we have three tasks to perform - (a) balanc-
ing between probing rate and self-report timeliness using
policy-based schedules (b) collecting self-reports from the
users and (c) constructing the inopportune moment detec-
tion model.

4.1.1 Balance Probing Rate and Self-report Timeliness
Depending on the nature of the study, we may decide to
deploy an appropriate policy-based schedule in this phase.

Fig. 4: Schematic of the proposed ESM design method. In phase
1, only policy-based ESM schedule is used to issue probes
balancing probing rate and self-report timeliness. In parallel,
it constructs the inopportune moment detection model based
on user responses. In phase 2, policy-based ESM schedule
determines the probing moments, which are checked by the
model to ensure probing at opportune moments only.

For example, if the focus of the study is to limit number
of probes, we may use a time-based schedule with high
inter-probing gap. Similarly, if we want to collect the self-
reports timely, we may use an event-based schedule. In
order to balance both, we use a combination of these two.
We name this scheduling policy as LIHF (Low-Interference-
High-Fidelity), which tries to strike a balance between prob-
ing frequency and timely self-report collection [15].

Algorithm 1: LIHF ESM Schedule
Input: EventLog, ESMLog
Output: ESM Probe

1 while true do
2 E← Detect event of interest
3 N ← Set of events in EventLog table

/* Check if any event of interest has occurred */
4 if (E ∈ N) then
5 t1← Timestamp of last ESM probe
6 t2← Current timestamp

/* Check if minimum time has been elapsed since
last probing */

7 if time difference (t2, t1) > W then
/* Check if the screen is locked */

8 if isScreenLocked() then
9 Do not fire ESM probe

10 else
11 1. Fire ESM probe
12 2. Update ESM probe timestamp in ESMLog table

13 Sleep T seconds;
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The primary objective of the LIHF policy is to identify
the probing moments in such a manner that there is suffi-
cient gap between two ESM probes and at the same time
self-reports are collected close to the event of interest. We
outline the LIHF policy in Algorithm 1.

This hybrid policy-based approach triggers a survey
request only if (a) event of interest E has occurred and
(b) a minimum time W has elapsed since the last probe.
The algorithm monitors if any event (E) has occurred that
belongs to predefined set of events N (EventLog). If so, it
checks the elapsed time since last probing as maintained
in ESMLog table. In case the elapsed time is greater than
the W , the probe is issued, otherwise not. However, it may
so happen that once a probe is about to be issued, the
screen is locked which may delay the label collection. We
issue the probe as soon as the screen the unlocked but
eliminate delayed responses during data processing. We
decide not to consider these probes because user response
may get attenuated because of the delay induced by the
locked screen. The collection of two consecutive events (E)
is separated by introducing sleep parameter (T ).

4.1.2 Self-report Collection
We use same survey collection UI as shown in Fig. 2. We col-
lect the self-report responses from the participants; notably
if any probe response is recorded as No Response, it indicates
that the probe has been issued at inopportune moment.
All other valid responses indicate the probing moment as
opportune. Hence, the outcome of Policy-based ESM Schedule
provides the collection of self-reports, which contain the
ground truths regarding the inopportune moments.

4.1.3 Inopportune Moment Model Construction
We leverage on the collected survey responses and infor-
mation related to the ESM study (say App usages etc) to
construct the inopportune moment detection model. This is
a two-state classification model which identifies the probing
moment as inopportune or not. We extract the features
associated from the event of interest and use them to con-
struct a machine learning model to detect the inopportune
moments. The evaluation of the model is performed based
on the ground truth inopportune moments, collected from
the survey responses. The model feature identification step
is not generalized and depends on the events specific to the
application for which the ESM schedule is being designed.
We discuss one case study in section 5.

4.2 Phase-2: Model based Approach to Predict Oppor-
tune Probing Moment
At the end of first phase, we have developed the ESM
with two capabilities - (1) balance the probing rate and
timely self-report collection and (2) ensure that no probe
is issued at an inopportune moment based on a machine
learning model. In phase-2, the inopportune moment detec-
tion model becomes operational. In this phase, the survey
UI does not contain any No Response label and the model
decides whether the probing should be done or not. We
outline the second phase in Algorithm 2. We invoke the
Policy-based ESM Schedule used in phase-1 to generate the
probes (line 2). Next, we check if the probing rules have

been satisfied and the probe is generated by the policy-
based ESM (line 3). If the probe is generated, the model
determines whether the current moment is inopportune or
not (line 4 - 6). If the model finds that the current moment
as inopportune (line 7), it skips the probe (line 8), otherwise
the probe is fired (line 10).

Algorithm 2: Phase 2 of ESM Schedule Design
Input: Inopportune moment detection model (M )
Output: ESM Probe

1 while true do
/* Determine probing based on policy-based ESM

first */
2 probe← isProbeGenerated()

/* Check if policy-based ESM generates the probe */
3 if (probe == TRUE) then
4 ev← Identify event of interest
5 [f ]← Extract features from ev
6 pred←M.predict(f)
7 if (pred == inopportune) then
8 Do not fire ESM probe

9 else
10 Fire ESM probe

5 CASE STUDY : TYPING BASED EMOTION DE-
TECTION IN SMARTPHONE

In this paper, we focus on typing based emotion detection
application in smartphone as case study, as this application
heavily relies on ESM for collecting emotion self-reports,
which are used as ground truth to build the emotion detec-
tion model.

Fig. 5: Schematic of typing based emotion detection scenario.
For example, time interval between t1 and t2 is considered a
typing session, where each small bar within this session is a key
pressing event. ESM probe to collect emotion label provided
between t2 and t3 is associated with this typing session.

We develop TapSense, a typing based emotion detection
application in smartphone. Fig. 5 shows the scenario of
typing based emotion detection. As a user performs typing
activity, we extract her typing sessions, the time period one
stays onto a single application without changing the same.
Subsequently, based on the ESM probes, the self-report is
collected after each typing session and attached with it. We
use the same self-report collection UI as shown in Fig. 2.
This survey questionnaire provides the option (happy, sad,
stressed, relaxed) to record ground truth about the emotion
experienced by the user while typing. This captures four
largely represented emotions from four different quadrants
of the Circumplex model [37] as shown in Fig. 6. We select
these discrete emotions as their valence-arousal represen-
tation is unambiguous on Circumplex plane. Any discrete
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Fig. 6: Circumplex
Model of emo-
tion showing four
emotions having
unambiguous va-
lence and arousal.

Fig. 7: End-to-end probe generation steps in
context of typing based emotion detection
when both the phases are operational.

emotion and it’s unambiguous representation on valence-
arousal plane are equivalent [38]. Moreover selecting emo-
tion states from different quadrants helps user to distinguish
them well during self-reporting. We also include the No
Response option so that the user can select this option to
indicate the current probing moment is inopportune.

We customize the proposed ESM schedule and integrate
with TapSense for self-report collection. In this section, we
focus on customizing the proposed ESM schedule. Subse-
quently, in section 6, we discuss the realization of TapSense.

5.1 Implementation of Proposed ESM for TapSense

The customization of the proposed two-phase ESM for
TapSense is summarized in Fig. 7. In phase 1, we com-
bine policy-based schedules to balance probing rate and
timeliness and construct the inopportune moment detection
model and in phase 2, we make the inopportune moment
detection model operational.

5.1.1 Balancing Probing Frequency and Timeliness

We implement the LIHF schedule (Algorithm 1) by cus-
tomizing in context of typing based emotion detection. In
this context, we define the event of interest as the end of a
typing session. This policy would help to collect the labels
close to the event, but at the same time probing at the
end of every typing session would lead to generation of too
many probes. In order to trade off these two conflicting
requirements, we make sure that there is sufficient amount
of typing done in a typing session. We decide to issue the
probe only (a) if the user has performed sufficient amount
of typing (L = 80 characters) in a typing session and (b)
a minimum time interval (W = 30 minutes) has elapsed
since the last ESM probe. In order to ensure the labels are
collected close to typing session, we use the polling interval
parameter (T = 15 seconds), which checks at every interval
T if the user has performed sufficient amount of typing. We
describe the selection of threshold values based on initial
field trials in Appendix A1. We show the flow-chart of
modified version of LIHF schedule in Fig. 7 (Phase 1).

1. Submitted as supplemental material

5.1.2 Inopportune Moment Detection Model
As we are collecting self-reports, we obtain both No
Responses and valid emotion responses. We leverage on
these labels to build the inopportune moment detection
model. We use typing duration and the typing length
in a session as features, since lengthy and longer typing
session may indicate high user engagement and not be the
ideal moment for triggering a probe. In addition, there
may be some types of applications like media, games
when the users may not be interrupted for probing.
So, we include application type also as a feature. We
categorize the applications into one of the 7 classes
(Browsing, Email, Media, Instant Messaging
(IM), Online Social Network (OSN), SMS and
Misc) following the description of the application in the
play store. Moreover, we use the label of last ESM probe
response as a feature. We use it to determine whether
user continues to remain occupied in current session, if
she marked the previous session with No Response. During
model construction, we can easily get this label from the
user self report of the last session. However, once the model
is deployed and the users stop providing the No Response
label, we use the predicted value of inopportune moment
for last session as feature value for the current session. Table 2
summarizes the features used to implement the model. We
construct an all-user Random Forest based model to detect
the inopportune moments. Once the model is constructed,
it is augmented with the modified LIHF schedule to detect
and eliminate inopportune probes (Fig. 7 (Phase 2)).

Feature Name Feature Description
Session duration Duration of the typing session
Session length Length of the text in the session
App category Category of the application
Last ESM probe response Last ESM probe response

TABLE 2: Features used to detect inopportune moments

6 TAPSENSE: DESIGN AND IMPLEMENTATION

In this section, we discuss the design, development and
deployment of TapSense, an Android based application to
determine emotion from typing activity in smartphone. We
use it as the experiment apparatus to conduct the field study.

6.1 Experiment Apparatus
We show the architecture of TapSense application in Fig.
8. It consists of following key components. TapLogger im-
plements an Input Method Editor (IME) [39] provided by
Android and we refer it as the study keyboard. It is similar like
QWERTY keyboards with additional capabilities of tracing
all typing details. We do not capture or store any text
to preserve user privacy. ProbeEngine runs on the phone,
generates the notifications and collects the user responses.
In first phase of ESM design, it implements LIHF as Policy-
based ESM schedule and collects emotion self-reports using
the survey UI (Fig. 2). The typing details and the associated
emotion self-reports available at the server via Uploader
module once the user connected to Internet. Based on the
typing data and self-reports the inopportune moment detection
model is constructed and integrated with ProbeEngine to
optimize probing in second phase. In parallel, the emotion
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detection model is also constructed to determine the different
emotion states based on typing. We implement both these
models in Weka [40] using Random Forest by using 100
decision trees with maximum depth of the tree as unlimited.

Fig. 8: TapSense application architecture. TapLogger records
user’s typing activity and ProbeEngine issues probes and collects
user responses. Upon receiving these details on the server, fea-
tures are extracted to build the inopportune moment detection
model. Finally, the model is integrated with ProbeEngine to
optimize probing. In parallel, the emotion detection model is
also constructed to detect multiple emotion states from typing.

6.1.1 Emotion Detection Model
The emotion detection model in TapSense detects four emo-
tion states (happy, sad, stressed, relaxed) based on smartphone
typing. The intuition is that if the survey responses collected
by proposed ESM are of high quality and capture emotion
self-reports correctly, the model can produce high emotion
classification performance. We design a personalized multi-
state emotion detection model using Random Forest to
detect the emotions.

Feature Name Feature Description

Session typing speed
Average of all elapsed times
between two consecutive typing
events in the session

Session length Length of the typed text in the
session

Session duration Time duration of the session

Backspace percentage Percentage of backspace and
delete keys typed in the session

Special character percentage Percentage of special characters
in the session

Last ESM probe response Emotion label as provided by
the user

TABLE 3: Features used to construct emotion detection model

We summarize the features used for emotion detection
in Table 3. We use typing speed as a feature. For every
session, we compute the time interval between consecutive
tap events. We find the mean of all such time intervals
present in a session and use it as typing speed. We compute
the fraction of backspace and delete keys present in a session
and use it as a feature. Similarly, we use the fraction of
special characters in a session, session duration and length
of typed text in a session as features. Any non-alphanumeric
character is considered special character. We also use last
emotion self-report as a feature to build the model, because
emotion states persist over time and current emotion may
often be influenced by the previous one [41], [42]. During
emotion model construction, we obtain this label from the
previous emotion self-report. However, when the model is
operational, we use the predicted emotion for last session as
the feature value for the current session.

6.2 Field Study
6.2.1 Survey Focus Group
We recruited 28 university students (22 male, 6 female,
aged 24 − 35 years) to deploy TapSense. We installed the
application on their smartphones and instructed them to use
it for 3 weeks. Three participants left the study in between
and other three participants have recorded less than 40
labels. So, we have discarded these 6 users and collected
data from the remaining 22 participants (18 male, 4 female).

6.2.2 Instruction and Study Procedure
During the field study, we execute only first phase, where
we implement LIHF schedule as policy-based ESM Sched-
ule. We instructed participants to select the study keyboard
as the default keyboard. We informed the participants that
when they switch from an application after completing
typing activity, they may receive a survey questionnaire as
a pop-up, where they can record their emotion. We also
advised the participants not to dismiss the pop-up if they
are occupied; instead they were asked to record No Response
if they do not want to record emotion at that moment.

7 DATA ANALYSIS AND FEATURE IDENTIFICATION

In this section, first we describe the collected dataset fol-
lowed by detailed analysis of the dataset in terms of (a)
analysis of No Responses and (b) feature analysis of the
inopportune moment detection model.

Total typing events 942,827
Total typing sessions 4,609
Total typing duration (in Hr.) 199.1
Mean typing sessions (per user) 209 (Sd: 167.2)
Minimum number of typing sessions for a user 46
Maximum number of typing sessions for a user 549

TABLE 4: Final dataset details

7.1 Dataset
During this study period, we have collected 4, 609 typing
sessions, which constitute close to 200 hours of typing. Out of
these sessions, we record a total of 642 number of No Response
sessions, which is nearly 14% of all recorded sessions. We
summarize the final dataset in Table 4.

0 2 4 6 8 10 12 14 16 18 20 22
User

0

20

40

60

80

100

120

E
m

ot
io

n 
la

be
l (

%
)

Happy Sad Stressed Relaxed

Fig. 9: Distribution of emotion labels for every user. All but 5
users (U6, U7, U12, U13, U18) have recorded four emotions.

The users have reported two types of responses - (a) One
of the four valid emotions or (b) No Response label. We show
the distribution of different emotion states for every user in
Fig. 9. We have observed that for most of users relaxed is
the most dominant emotion state. Overall we have achieved
14%, 9%, 30%, 47% sessions tagged with happy, sad, stressed
and relaxed emotion states.
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Fig. 10: Distribution of No Response sessions. (a) User-wise distribution measures fraction of total sessions marked as No Response
for each user (b) App-wise distribution indicates fraction of total No Response sessions collected from each app (c) Time-wise
distribution compares fraction of total No Response sessions and fraction of total Other sessions collected at different times (d)
Hour-wise distribution indicates the fraction of total No Response sessions collected at specified time window.

7.2 No Response Analysis

We show the user-wise distribution of No Response sessions
in Fig. 10a. Although for most of the users, the fraction
of No Response labels are relatively low, for few users it is
more than 40%, which can be attributed to personalized self-
reporting behavior. We observe the application-wise distri-
bution of No Response sessions in Fig. 10b, which indicates
that majority of the No Response labels are associated with
Instant Messaging (IM) applications like WhatsApp.
We also compare the distribution of No Response and other
valid emotion labels at weekday, weekend, working hour
and non-working hour in Fig. 10c. We compute the per-
centage of total No Response and percentage of total Other
sessions are recorded at each of these time period. However,
in our dataset, we do not observe any major difference
among these distributions. We also explore the time-wise
distribution of No Response sessions in Fig. 10d, which
indicates that during late night from 3 AM onwards, few
number of No Response sessions were recorded. This can be
attributed to overall less engagement during late night.

7.3 Inopportune Moment Detection Features

We illustrate the utility of different features used to detect
inopportune moments, which are realized by the No Re-
sponse labels.

7.3.1 Typing Session Length and Duration
We compare the session length and session duration for No
Response and other sessions in Fig. 11a and 11b respectively.
We observe that sessions marked with No Response are com-
paratively lengthy and longer than other sessions. We vali-
date these performing a t-test. Before applying t-test, we ver-
ify the normality using one-sample Kolmogorov-Smirnov
(KS) test [43]. We observe a significant (p < 0.05) difference
in mean session length of No Response and other sessions.
We observe the similar effect for mean session duration.
Intuitively, this finding indicates that when participants are
engaged in lengthy and longer typing conversations, they
may not like to get the ESM probes and decline the probe
by selecting No Response.

7.3.2 Application Category
We also compare the distribution of No Response and other
valid emotion labels for each application category in Fig.
12. We observe that there is a comparatively high number
of No Response sessions triggered when the participants are
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Fig. 11: Comparison of session length and session duration for
No Response and other sessions. Mean session length and ses-
sion duration are found to be significantly (p < 0.05) different
between two groups using t-test.

engaged with IM, Email content. On the contrary, users
responded with valid emotion labels if probes are issued
during SMS or OSN (Online Social Network) engage-
ments. We also find that the difference in app usage in No
Response and Other emotion state is significantly (p < 0.05)
different using chi-square test [df=6, chi-square stat=87.98].
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Fig. 12: Comparison of application usage distribution for No Re-
sponse and other sessions. The differences in app usage between
these two groups are found statistically significant (p < 0.05)
using chi-square test.

7.3.3 Previous ESM Probe Response
Finally, we investigate if a participant marks the current
session with No Response, how likely she is going to la-
bel the next session again with No Response. This helps to
understand if the user is currently occupied, whether she
will remain so in near future. We compute the transition
probability to No Response from other states; i.e. probability
of obtaining next state as No Response from each of the 5
states (happy, sad, stressed, relaxed, No Response). Similarly,
we measure the transition probability of any other valid
emotion state from each of these 5 states. We plot both
these values in Fig. 13. We observe that approximately 78%
of cases the next state is labeled as No Response, given the
current state is labeled with No Response. We also perform
chi-square test, which reveals that both these transition
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probabilities from current state to next state (No Response
or Other) vary significantly (p < 0.05) [df=4, chi-square
stat=2465.7].
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Fig. 13: Transition probability from current state to No Re-
sponse or Other as next state. Comparatively high probability
of obtaining No Response as next probe response if current
probe response is selected as No Response. The differences in
transition probabilities from any state to these two states are
found statistically significant (p < 0.05) using chi-square test.

8 EVALUATION

We evaluate the ESM design with respect to the (a) policy-
based ESM schedule and (b) inopportune moment detection
model. The metrics used in the evaluation are introduced
first.

8.1 Experiment Setup
During field study, we used LIHF ESM schedule for collect-
ing self-reports. However, in order to perform a compar-
ative study across different policies, we require data from
time-based and event-based ESM schedules under identi-
cal experimental conditions from every participant. In actual
deployment, identical conditions are impossible to repeat
over different time frames. Hence, we generate traces for the
other policy-based schedules from the data collected using
LIHF ESM. We outline the generation steps in Appendix B2.
We also show the distribution of emotion labels obtained
from different schedules after trace generation in Fig. 14.
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Fig. 14: Frequency distribution of different emotions across var-
ious ESM schedules. The distribution is found to be identical.

8.1.1 Baseline ESM Schedules
Different ESM schedules, listed in Table 5, used for compar-
ison are described.
• Policy-based ESM: We use three policy-based ESM sched-

ules - TB, EB and LIHF. In case of TB, probes are issued at
a fixed interval (3 hours). In case of EB, after every typing
session a probe is issued, while LIHF implements the

2. Submitted as supplemental material

LIHF policy as outlined in Algorithm 1. These approaches
do not use an inopportune moment detection model.
Comparison of these schedules help to understand their
effectiveness in reducing probing rate and collecting self-
reports timely.

• Model-based ESM: We use following model-based ESM
schedules - TB-M, EB-M and LIHF-M. These ESM sched-
ules implement TB, EB and LIHF schedule in phase 1 re-
spectively followed by the inopportune moment detection
model operational in phase 2. In all these schedules, the
model is constructed using same set of features (Table 2)
extracted from relevant trace (i.e. for TB-M the model is
constructed from trace of TB and similarly). Comparison
of these model-driven schedules helps to understand the
efficacy of the model in detecting the inopportune mo-
ments and whether applying the model with any off-the-
shelf ESM is good enough to improve survey response
quality.

ESM Schedule Phase 1 Phase 2
TB Time-based No model is used
EB Event-based No model is used
LIHF LIHF No model is used
TB-M Time-based Inopportune moment detection model
EB-M Event-based Inopportune moment detection model
LIHF-M LIHF Inopportune moment detection model

TABLE 5: Different ESM schedules based on the policy used in
phase 1 and usage of the model in phase 2.

8.1.2 Performance Metrics
We use the following metrics to measure the probing rate re-
duction, timely self-report collection, inopportune moment
identification and survey response quality improvement.

(i) Probe Frequency Index
We compare the probing frequencies of different ESM sched-
ules. We measure it using the metric Probe Frequency Index
(PFI), defined as follows. Let there be different ESM sched-
ules (e ∈ E) and Ne

i denotes the number of probes issued
for user i for an ESM schedule e, then PFI for user i for ESM
schedule e is expressed as, PFIei =

Ne
i

∀e,max(Ne
i )

.

(ii) Recency of Label
The timeliness of survey response collection is measured
using Recency of Label (RoL). RoL compares the elapsed
time between an event, i.e. completion of typing session,
and the survey request to collect emotion label. Let there
be different ESM schedules (e ∈ E) and dei denotes average
elapsed time between typing and probing for user i for an
ESM schedule e, then RoL for user i for ESM schedule e is
expressed as, RoLe

i =
de
i

∀e,max(de
i )

.

(iii) Inopportune Moment Identification
We measure Precision, Recall and F-score for inopportune
moment detection. We have two classes inopportune and
opportune, accordingly we measure TP, FP, FN and TN
(true positive, false positive, false negative, and true neg-
ative). We also use AUCROC (Area under the Receiver
Operating Characteristic curve) as the classification metric.
We compute weighted average of AUCROC (aucwt) us-
ing AUCROC for inopportune and opportune moments as



10

follows. Let fi, auci indicate the fraction of samples and
AUCROC for class i respectively, then aucwt is expressed
as, aucwt =

∑
∀i∈{inopportune,opportune} fi ∗ auci.

(iv) Survey Response Quality
We measure the survey response quality using (a) emotion
classification accuracy and (b) number of valid emotion
labels (happy, sad, stressed, relaxed) collected.

Emotion Classification Accuracy: The performance of
supervised learning algorithms highly depends on qual-
ity of labels [44]. The label quality can adversely impact
classification accuracy [45], [46]. So, we use classification
accuracy to measure survey response quality, as it indicates
that randomly reported labels at inopportune moments can
impact classification performance, eliminating those probes
at inopportune moments can improve quality of labels and
overall classification performance in turn. For this pur-
pose, we compare the emotion classification performance
obtained using different schedules. We evaluate the emo-
tion detection models for every user using 10-fold cross
validation and use AUCROC as the performance metric.
We compute the weighted average of AUCROC (aucwt)
using AUCROC from four different emotion states. Let
fi, auci indicate the fraction of samples and AUCROC for
emotion state i respectively, then aucwt is expressed as,
aucwt =

∑
∀i∈{happy,sad,stressed,relaxed} fi ∗ auci.

Valid Response Rate: We compute the percentage of
valid emotion labels also. It identifies whether by probing
at opportune moments, the number of valid responses has
increased or not. Let there be different ESM schedules
(e ∈ E) and nre denotes the fraction of No Response sessions
recorded for ESM e, then Valid Response Rate (VRR) for
ESM e is expressed as, V RRe = (1− nre) ∗ 100.

8.1.3 Evaluation procedure
In policy-based ESM Schedule, we focus on balancing be-
tween probing frequency and timely self-report collection.
So, we compare LIHF ESM with EB and TB schedules using
the above-defined metrics. In order to evaluate the complete
ESM design, we focus on ensuring that no probe is issued at
inopportune moment. So, we compare LIHF-M with EB-M
and TB-M schedules. We perform leave-one-participant-out
cross-validation (i.e. for a user we train the model using
data from others and test using her data) in each of the
three cases and measure the inopportune moment detection
performance.

In order to measure the survey response quality, we
evaluate how accurately the emotion detection model, con-
structed using the proposed ESM design, can determine
the emotion states. The policy-based ESM schedules (TB,
EB, LIHF) do not apply the inopportune moment detection
model. As a result, there will be No Response self-reports
attached to different typing sessions. These labels do not
reflect any emotion state. But as probes have been issued
during those moments, user would have recorded some
emotion label against these probes if there was no option
to select No Response. Although it is difficult to know what
the user might have responded, we propose the following
approach to replace No Response by emotion labels, so that
distribution of emotion labels before and after replacement
remains unaltered.

• Compute the frequency distribution of emotion labels
(happy, sad, stressed, relaxed) from the original user re-
sponses.

• Generate proportionate number of valid emotion labels
for the total number of recorded No Responses.

• Replace the No Response labels with the generated labels,
such that the distribution of labels remain unaltered.

Notably, with this approach we obtain an average corre-
lation of 0.99 (std dev. 0.01) between the distribution of
emotion labels before and after replacement.

In case of model-based ESM schedules (TB-M, EB-M,
LIHF-M), the inopportune moment detection model is in
place and detects inopportune moments. There will be fol-
lowing possible cases - (a) correctly classifies the inoppor-
tune moments (b) correctly classifies opportune moments
and (c) incorrect classification, which can be again of two
types - identifies opportune moment as inopportune and
vice-versa. In first case, the probing will be skipped and we
drop the corresponding No Response label. In second case,
we accept the emotion label as is. In case of an error that
opportune moment is identified as inopportune, there will
not be any probing and we drop the valid emotion label
response. In reverse case, there will be probing and user
will record some emotion state. In this case also, we realize
the same by replacing the No Response label with one of the
four emotion states (happy, sad, stressed, relaxed) based on the
No Response replacement strategy. Once the emotion labels
are obtained, the personalized emotion detection models
are constructed for every user and ESM schedule. These
models are evaluated similarly using the survey response
quality metric.

8.2 Probing Rate Reduction
We compare the average number of probes issued by each
ESM schedule in Fig. 15a. We observe that time-based ESM
(TB) issues minimum number of probes, event-based ESM
(EB) issues maximum number of probes while LIHF ESM
lies in between. It is observed that average number of probes
is reduced by 64% for LIHF ESM policy.

We also perform user-wise comparison using the Probe
Frequency Index (PFI) metric in Fig. 15b. For all users, PFI
for LIHF ESM is lower than that of event-based ESM. Across
all users, there is an average improvement of 54% in PFI.
Time-based ESM is the best in terms of PFI, but does not
capture self-reports timely, as shown later. As LIHF ESM
schedule enforces a minimum elapsed time between two
successive probes, it generates less number of probes and
reduces probing rate compared to event-based ESM.

8.3 Timely Self-report Collection
We measure how close to the typing completion, the ESM
schedule collects the self-report. It is expected that if the
self-reports are collected close to the typing completion, the
user will be able to recall the perceived emotion during
typing more accurately. We compare the average elapsed
time between typing completion and self-report collection
for different ESM schedules in Fig. 16a. The average elapsed
time is found to be the least for event-based ESM, highest for
time-based ESM, while for LIHF, it lies in between. Average
elapsed time for label collection is reduced by 9% for LIHF.
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Fig. 15: Comparing probing rate across ESM schedules in terms of average number of probes and PFI. Event-based schedule has
the highest probing rate and time-based schedule has the least one, while LIHF has the probing rate in between.
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Fig. 16: Comparing timely self-report collection across ESM schedules in terms of average elapsed time and RoL. Time-based
schedule has the highest elapsed time and event-based schedule has the least one, while LIHF has the elapsed time in between.

We also compare the recency of labels using RoL in Fig.
16b. We observe that for every user RoL is minimum for
EB and for most of the users RoL is maximum in case of
TB while for LIHF the RoL lies in between. Since, in case
of EB, we issue the probe as soon as the typing event is
completed, it can collect self-reports very close to the event,
resulting in lowest RoL. On the contrary, in case of TB, we
perform probing at an interval of 3 hours, as a result there is
often large gap between typing completion and self-report
collection, resulting in high RoL. But in case of LIHF, we
keep on accumulating events and separate two consecutive
probes by at least half an hour, therefore we compromise
to some extent in recency but not as much as in case of
TB. However, we observe that for few users (e.g. 1, 3, 4),
some labels in LIHF are collected after a significant time
is elapsed after typing completion. As a result, when we
compute average elapsed time for every probe, the value
becomes large thereby having high RoL in LIHF than that
of TB for these users. However, for most of the users, the
value of RoL is highest in TB indicating timely self-report
collection may not be ensured by TB schedules.

8.4 Inopportune Moment Detection

We compare the inopportune moment classification perfor-
mance of three model based approaches in Fig. 17a. We
observe that the LIHF-M attains an accuracy (AUCROC)
of 89%, closely followed by EB-M, while TB-M performs
poorly. We obtained an AUCROC of 88% and 75% for EB-
M and TB-M respectively. We also note the precision, recall

and F-score values of identifying inopportune moments in
Fig. 17b using LIHF-M schedule. We obtain close to 80%
precision in identifying the inopportune moments. We also
report the recall rate of inopportune moments for every user
in Fig. 17c. We observe that for 14% of the users, recall rate
is greater than 75%, and for 60% of the user recall rate is
greater than 50% For few users, none of the inopportune
moments are detected correctly because they have very
few sessions (less than 4% of overall sessions) tagged with
inopportune moments. It is observed that users with high
number of No Response (Fig. 10a) gets more benefit using
the inopportune moment detection model. In summary, the
proposed model combined with LIHF ESM performs best,
while other ESM schedules also detect the inopportune
moments well with this model.

8.4.1 Influence of Inopportune Moment Detection Features
We find the importance of every feature by ranking them
based on the information gain (IG) achieved by adding
it for predicting the inopportune moment. We use the In-
foGainAttributeEval method from Weka [40] to obtain the
information gain of each feature. Our results show that last
ESM probe response is the most important feature followed
by application category.

Feature Name Rank Average IG
Last ESM probe response 1 0.669
App category 2 0.053
Session length 3 0.019
Session duration 4 0.012

TABLE 6: Ranking inopportune moment detection features
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Fig. 17: Inopportune moment detection performance. (a) Comparison of inopportune moment classification performance for
different ESM schedules (b) Performance metrics in LIHF-M schedule in identifying inopportune moments (c) Recall rate of
inopportune moments for every user in LIHF-M schedule
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Fig. 18: Survey response quality measurement. (a) Emotion classification accuracy (AUCROC) using different ESM schedules.
Applying the inopportune moment detection model improves the policy-based schedules. (b) Emotion classification accuracy
(aucwt) for LIHF-M schedule for every user (c) Comparing number of valid response for LIHF, LIHF-M schedules.

8.5 Survey Response Quality
8.5.1 Emotion Classification Performance
The measured response quality in terms of emotion classi-
fication accuracy for different ESMs is shown in Fig. 18a.
We observe that LIHF-M outperforms other schedules with
a mean AUCROC of 78%. We also show the user-wise emo-
tion detection AUCROC (aucwt) corresponding to LIHF-M
schedule in Fig. 18b. We observe that for more than 45%
users the AUCROC is greater than 80% and for all but
two users the AUCROC is greater than 70%. This helps
to obtain superior classification performance for LIHF-M
schedule (Fig. 18a). It returns maximum improvement of
24% with respect to TB and improvement of 5% with respect
to EB. We also observe that after applying the inopportune
moment detection model, mean AUCROC (aucwt) improves
(by ≈ 4%) for each corresponding schedule (TB, EB, LIHF).

As the number of probes are less in time-based sched-
ules, if some probes are responded randomly due to probing
at inopportune moments, the prediction quality suffers a lot.
On the contrary, since in case of event-based schedules there
are large number of probes, if some of these are marked
randomly, the overall prediction does not deteriorate that
much, but event-based schedules issue high number of
probes. However, in case of LIHF, since we already balance
between probing rate and timely self-report collection, ap-
plying the inopportune moment detection model on top of
it further increases the quality of self-reports as reflected by
the overall emotion classification performance.

Influence of Emotion Detection Features
We find the importance of the features used for emotion
detection using InfoGainAttributeEval method from Weka.
We compute the average Information Gain (IG) of every

feature and rank them in Table 7. We observe that last ESM
response is the most discriminating feature, followed by
features like typing speed, backspace percentage. All the
features are found to have an effect on emotion detection.

Feature name Rank Average IG.
Last ESM probe response 1 0.468
Session typing speed 2 0.376
Backspace percentage 3 0.270
Session length 4 0.231
Special character percentage 5 0.203
Session duration 6 0.181

TABLE 7: Ranking emotion detection features

8.5.2 Number of Valid Responses
We compare the valid response rate (V RR) for LIHF, LIHF-
M schedules in Fig. 18c. We do not consider other schedules
as those labels were generated synthetically. The V RR for
LIHF is 86% and the same for LIHF-M is 96%. This further
proves the effectiveness of the inopportune moment detec-
tion model. As the model is in place for LIHF-M, it detects
and skips probing at the inopportune moments, thereby
improving the number of valid emotion responses.

8.6 Post-study Qualitative Assessment
We conducted a post-study participant survey to gauge
the effectiveness of proposed ESM design approach. We
asked the participants questions related to various aspects
of ESM design (i.e. probing frequency, survey completion
time, cognitive load, timely self-report collection and inter-
ruptibility) and obtained the rating in a scale of 1 (worst) to
5 (best). We compute the weighted average score as follows,
mwt =

∑5
i=1 i∗ni

N , where i denotes the rating provided by the
user, ni indicates the number of users provided the rating i
and N indicates the total number of users.
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Fig. 19: Average score of different ESM design parameters based
on post-study survey

We report the average scores of these parameters in
Fig. 19. We asked (a) if the daily probing frequency is
appropriate, to which 64% participants agreed (provided a
score ≥ 4) and only 18% participants disagreed (provided a
score≤ 2); thus we obtained an average score of 3.6 (probing
freq). (b) We checked if the time required to fill the survey
is high, to which 91% participants disagreed (provided a
score ≥ 4), which yielded a final score of 4.4 (completion
time). (c) In terms of cognitive load exerted while filling out
the survey, 64% participants agreed that the mental effort
required is very small (rated at least 4), while 14% rated
neutral; which finally resulted into a score of 3.6 (cognitive
load). (d) We also investigated if the survey responses are
collected timely i.e. close to the typing completion; to which
55% participants agreed and we obtained a final score of
3.2 (timely probe). The score is relatively less in this aspect
because often the probing may be delayed by external fac-
tors like screenlock, imposed delay. (e) Finally, we checked
if the LIHF ESM schedule interrupts the regular activity, to
which 68% participants disagreed (provided a score ≥ 4).
This returned an average score of 3.7 (interruptibility). This
relatively less score can be attributed to the probing at inop-
portune moments (as inopportune moment detection model
was not coupled with LIHF policy during data collection).

8.7 Limitations
It is important to be aware of the limitations of this work
before adopting the techniques. First, the inopportune mo-
ment detection model may not perform well for some users
if the number of No Response labels are very few (less than
4% of all sessions) as observed in Fig. 17c. Second, in order
to reduce probing frequency, we have collected responses
via LIHF ESM schedule instead of EB schedule. As a result,
we had to duplicate ESM response for few EB probes. It is
possible that had the labeling been done via event-based
ESM schedules, it may improve accuracy, but at the cost
of responding to significantly high number of probes. An-
other possible limitation could be the application keyboard.
Since most of the participants are conversant with Google
keyboard, use of a new keyboard may have disrupted their
daily activities. However, we do not observe a significant
effect in the app usage due to this as we record 86% valid
emotion labels and on average 209 typing sessions per user
(Table 4). Finally, during self-reporting if the participants
have skipped the popup instead of selecting No Response,
we could not capture those moments in our study.

9 CONCLUSION

This paper advocates mobile based ESM design to opti-
mize probing rate, timely self-report collection and user

interruptibility together for better survey response quality.
We propose a two-phase ESM schedule design to improve
survey response quality in terms of valid and accurate
responses collected by considering these 3 parameters. In
phase-1, we develop an ESM schedule named as LIHF
schedule, which balances between probing rate and self-
reports timeliness. In phase-2, it optimizes probing further
by implementing a machine learning model, which ensures
probing at opportune moments only. We validate the pro-
posed ESM schedule design method using typing based
emotion detection in smartphone in a 3-week in-the-wild
study involving 22 participants. It reveals that proposed
design reduces the average probing rate by 64% and collects
self-reports more timely by reducing the average elapsed
time by 9%. It also highlights that the proposed model of
identifying inopportune moments detects these unfavorable
moments with an average accuracy (AUCROC) of 89%. The
combined effect of reduced probing rate, timely self-report
collection and inopportune probe elimination is manifested
in survey response quality, which results in 96% valid
emotion label collection and a maximum improvement of
24% in emotion classification accuracy.
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