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that can perform coarse localization with low resource requirement. The key intuition
behind this work is that a collection of nearby textual signs in an image representing a user’s

I(()Z{‘::lvgcr)(rjsp;ositioning surrounding forms a bag-of-words that provides a unique signature for her location. Due to
Content based image retrieval the low performance of Optical Character Recognition (OCR) engine in outdoor settings, we
Signal based positioning develop a keyword-based positioning algorithm that can work even with partial errors in
Smartphone sensing the detected texts representing business names. The partial errors in recognized business
Database search names are handled by using an n-gram-based text correction approach. We use a cloud
Pattern machiﬂg based web service for offloading parts of the application workloads intelligently to save
Energy efficiency resources, like energy and network cost. The Android based prototype of WhereAml is

tested in uncontrolled environments. The experimental results show that WhereAml can
achieve 95% accuracy while consuming 20% less power than that of GPS. The proposed
keyword-based positioning algorithm takes about 59 ms on average for returning the
location.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The proliferation of smartphones and wearables has allowed novel ways to determine user’s location. Let us consider
a scenario where a tourist is lost in a sprawling city with skyscrapers all around. The tourist has a smartphone, but she is
running low on battery. GPS is not functioning well due to shadowing of the skyscrapers. Also, she is afraid of GPS draining
the phone battery quickly. All she needs is an approximate idea of where she is on a map so that she can plan which direction
to proceed towards her destination. Looking around she can see several business names which could easily act as a clue to
give a sense of her location if she could ask someone familiar with the lay of the city. The collection of business names in
an area often forms a unique signature of a place. Finding a feasible, resource efficient smartphone based solution to this
scenario motivates the work in this paper.

Given the scenario described in the use-case, different approaches can be employed to find the location of the user without
using GPS. The key intuition in all the techniques is to collect a signature marking the place, and then matching against
geotagged signatures [1]. The signature in our example is hidden in the business names surrounding a user. The easiest way
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for the user to share this signature is by taking a picture of her surrounding using her smartphone camera. Then the picture
content can be matched to find the location. The idea of localization using images captured by mobile devices have been
explored under the theme called Mobile Visual Location Recognition [2-6].

Mobile Visual Location Recognition has progressed along two dimensions: one, matching image features to geotagged
images; and second, finding texts in images serving as location context and finding geotags for the contexts. With advances
in computer vision techniques, extracting and matching image features have become more efficient, but the computation
cost, as well as, latency for computing a match is still high [7,8]. The alternative approach of extracting texts from images has
gained in promise with the improvements in Optical Character Recognition (OCR) techniques [9-11]. However, depending on
the complexity of the image from where the texts must be extracted, the accuracy of text recognition can drop significantly,
thereby leading to low accuracy of locationing. Zamir et al. overcame the challenge of automatic business name recognition
from complex image content by using both visual and non-visual (GPS, business directories) context related to an image [ 12].
On the other hand, Song et al. were able to detect texts from roadsigns with high accuracy since these are images with cleaner
uniform background [11]. Vo et al. showed that even with partially correct texts that represent business names extracted
from images, locationing can be performed as long as the number of textual signatures are reasonably high [10]. However,
limitations of OCR capability pose a roadblock in pushing the limits of locationing accuracy in many of these text based
techniques.

In this work, we address the challenge of accurate detection of textual signatures from an image by proposing a
technique to predict correct texts from partially correct texts detected using OCR. The idea is to construct an n-gram
dataset based on the names of businesses surrounding a location. Then the partially correct text can be matched with the
n-grams to predict the correct business names. The main advantage of this approach is that it leads to faster location
recognition as the n-grams can be computed offline, or cached. In addition, with more accurate textual signatures locationing
accuracy improves significantly.

We have implemented the technique on top of the existing WhereAmlI Android application. The WhereAml application, !
presented in Section 2, implements locationing by extracting multiple texts from an image using only OCR. Hence it suffered
when texts have inaccuracies, leading to low locationing accuracy and slow response time due to longer matching time.
In this work, we showed that applying the n-gram based approach for text detection on top of OCR, we can improve both
accuracy and response time for locationing using texts from an image.

In summary, the main contributions of this work are:

e We present a technique for improving OCR-based recognition of texts, that represent business names, from an image.

e We present a complete design and implementation of an Android application that incorporates the improved
technique for fast and accurate localization using multiple texts from an image.

e We conduct an evaluation with different datasets that show the effectiveness of the system in various outdoor settings
in terms of localization accuracy, power consumption, and latency.

The remainder of this paper is organized as follows. Section 2 provides a background on the system design of WhereAml,
while introducing the details of the n-gram based text correction approach. It is followed by the implementation details
in Section 3. Section 4 reports experimental evaluation of WhereAml. We also discuss the pros and cons of WhereAml in
Section 5. Prior research related to this technique of localization are presented in Section 6. We conclude in Section 7.

2. WhereAml system design

In this section, we present the design challenges of WhereAmlI system. We also introduce the workflow and the detailed
design of each component in the system.

2.1. Design challenges

2.1.1. Low performance of OCR on outdoor images

The key function of the front-end process is to extract textual signs from an image captured by a user using a smartphone.
Off-the-shelf OCR engines work well for text extraction from scanned documents and for reading labels [ 13]. However, using
OCR in natural images still remains a challenging problem. The OCR performance in such outdoor scenes degrades due to
various uncontrolled parameters, such as variations in the font size and color, text alignment, uneven lighting, complex
backgrounds, and moving objects [14].

2.1.2. Partial errors in text detection

Many OCR-based text recognition techniques for outdoor environment have been proposed with the aid of image
processing techniques [15]. Despite these advancements, the text extraction process using OCR is error prone. Therefore,
the proposed keyword-based localization algorithm must be designed to handle partial errors in keywords. The matching
process must not depend only on exact match, but must use similarity scores which denote how closely an incorrect keyword
matches the correct one in the database.

1 WhereAm! App- http://tinyurl.com/nbd4aqe.
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Fig. 1. WhereAml system workflow showing the progression of steps in time.

2.1.3. Dataset construction using an anchor location

The success of the localization scheme hinges on the principle that a combination of names generates a unique signature
of a place. However, if we consider popular store names around the world, then many of the names can occur in a group in
the same location. For example, it is not unusual to find multiple coffee shops, like Starbucks and Dunkin Donuts in the
same area. Although increasing the number of keywords in the combination can improve the accuracy, still a better option
is to narrow down the search space with respect to the matching performance. The user’s approximate location can be used
as the anchor point to guide the matching process. This anchor point can be computed using coarse localization available
on most mobile devices, such as via cell tower triangulation or the location of the current cell that the mobile device is
connecting to.

2.1.4. Balancing the workloads between mobile devices and the cloud service

OCR libraries for mobile platforms are resource hungry and drain battery. The dataset construction process is also
compute-intensive and time-consuming, compared to the keyword-based localization process. Executing the localization
process while the data is still under-construction may fail due to the unavailability of the dataset, which degrades the success
rate of the whole system. Therefore, performing these processes on mobile devices is not an efficient solution.

Recent mobile applications employ offloading computation to migrate certain workloads from mobile devices to cloud
services. However, offloading computation can create problems in resource demands such as network bandwidth and
workloads at the cloud service. In our system, therefore, balancing the workloads between mobile devices and the cloud
service is necessary.

2.2. WhereAml workflow

WhereAml is designed as a fingerprint-based localization system, which consists of five main processes: Data Collection
(DC), Text Recognition (TR), Coarse-grained Localization (CP), N-Gram Dataset Construction (NDC), and Keyword-based
Localization (KP). The separation of these processes makes it easier to balance the workloads between the WhereAml
application and the cloud service. Fig. 1 shows the sequence of these processes in the workflow.

2.2.1. Data collection (DC) process

The workflow begins with a user starting the WhereAmlI app on her Android smartphone. The app provides the user an
interface to collect the textual signs by clicking a picture of her surrounding area or directly typing them into text fields
shown in the interface. The users are guided to collect textual signs which consist of several properties making them ideal
as location signatures, such as names of local businesses or buildings, prominent points of interests, and other fixed textual
markers. While, spatially or temporally unstable signs, such as texts on vehicles or on advertisement banners, are easily
identified and ignored.

Due to the low performance of OCR engine on a whole image, the users are required to highlight only the textual signs of
interest. The highlights make it simpler to locate and construct a bounding box around the marked text area. We use flood fill
algorithm to compute the extreme points of the highlight. Flood fill works by searching for a seed pixel(start point) for each
highlight and testing whether its neighboring pixels belong to the highlight. The algorithm functions in a recursive manner
and stops when it reaches the edges of the highlight.

In our method we store the point on the screen that the user touches at the start of every highlight and use them as the
seed pixels of each highlight. This eliminates the seed pixel search step thereby optimizing the processing time of flood fill.
We also handle overlapping highlights by merging and considering them as one continuous highlight. We use the computed
extreme points to create a bounding box with additional 10 pixel padding and crop the box from the original image.
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2.2.2. Text recognition (TR) process

Once the highlighted fragments are extracted, the text recognition process is triggered. Although the highlighted
fragments are image segments containing keywords, there still remain some irrelevant contents, such as the background
and other non-text objects. Removing these noises before performing the TR process on these fragments can improve the
performance of the OCR engine. We first perform contrast enhancement to compensate for uneven lighting. Then we apply
the Stroke Width Transform (SWT) to compute the text strokes while discarding the background objects [ 16]. By applying
these techniques, the OCR engine can work with an acceptable accuracy.

2.2.3. Coarse-grained localization (CP) process

With respect to the matching performance in the localization process, the search space should be reduced. In our system,
we use network location provider available on most mobile devices to acquire an approximate location of the mobile
user. Although network location provider provides low accuracy (around 1620 m), but it works well for both indoors and
outdoors, uses less power, and responds faster compared to GPS. Therefore, this approximate location can be used as an
anchor to collect only businesses whose coordinates are located within the anchor’s vicinity. The collected businesses are
later used to construct a n-gram dataset. Since collecting business places and constructing the n-gram dataset are time-
consuming processes, when the WhereAml app is started, the coarse-grained localization process is also triggered and run
simultaneously in the background.

2.2.4. N-Gram dataset construction (NDC) process

In spite of all the image processing, the text extraction process is not fool proof, and some keywords can have errors. In
order to handle errors in the extracted keywords, we use an n-gram model to search for the best match of business names.
The basic idea is to first construct a dataset of n-gram words from the given set of textual signs located in the vicinity.

Algorithm 1 N — Gram Dataset Construction

Require: A list of m place types provided by Google Places APl or Daum Maps APIT = Ty, Ty, ...Ty
Require: The anchor location: Coord(A) = A, Aion

Require: SearchRadius, MinGram=2

1: fori=1tomdo

2 [*Search for places within the SearchRadius of the anchor area with type T; */
3 N; = NearbySearchByType(T;, Coord(A), SearchRadius)

4:  [*Put the neighbor places to NGramMap dataset*/

5 PutToNGramMap(N;)

6: end for

7: procedure PutToNGramMap(Set N)
8: foreach placepe N do
9:  placeName = p.getPlaceName()
10:  forj = placeName.length to MinGram do

11: Set grams = NGramBuilder(placeName, j)

12: for each gram g € grams do

13: if nGramMap contains g then

14: SET placelDs = nGramMap.get(g)

15: if placelDs does not contain p.getPlacelD() then
16: Set hashMap = nGramMap.get(g)

17: hashMap.put(p.getPlacelD(), p)

18: end if

19: else

20: Initialize a new HashMap (String, Place) hm
21: hm.put(p.getPlacelD(),p)

22: nGramMap.put(g, hm )

23: end if

24: end for

25:  end for

26: end for

27: end procedure

28: NearbySearchByType(type T, anchor A, radius R):
29: returns a set of places matching the specified type T within radius R distance from anchor A.
30: NGramBuilder(text, N): returns a contiguous sequence of N items from the given sequence of text.

Algorithm 1 presents the n-gram dataset construction (NDC) process. The process requires an anchor location Coord(A)
returned by the coarse-grained localization (CP) process, a SearchRadius parameter which is the maximum localization error
of the CP process, and a list of place types T provided by Google Places API or Daum Maps APIL.
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Although there is a nearby search query supported by the se APIs, the number of places returned in one API query is
limited (60 for Google Places API, or 45 for Daum Maps API). In urban areas, therefore, many places may be missed in the
returned list even they are located close to the anchor. Missing these places may degrade the performance of the localization
process. In order to avoid missing these places, we execute each NearbySearch query separately according to place category.
For each place type T; in the list T, we retrieve a set of nearby places N; which have the same type T; (Line 3). Each set N;
then is used to create n-gram words and put into nGramMap which is a data structure that contains n-gram words and their
corresponding places (Line 5).

Procedure PutToNGramMap shows how to construct the n-gram dataset, given a set of places. For each place name of
place p in the list N, we build a set of n-gram words grams, where n is from 2 to the length of the place name (Line 11). For
each gram word g of place p, if nGramMap already contains g, we add p into list of places which have the same gram word
g. Otherwise, we create a new list of places corresponding to the gram word g, add the current place p to the list, and finally
put the gram g and the new list into the nGramMap.

2.2.5. Keyword-based localization (KP) process

The localization process is divided into two phases: text prediction and keyword-based localization phase. The text
prediction process takes as input a keyword obtained from the text recognition process and returns a list of business
places, whose name matching the keyword. It requires the dataset of n-gram words and their corresponding business places
nGramMap, which is constructed in the n-gram dataset construction process.

Algorithm 2 Keyword — based Localization Algorithm

Require: NGramMap, NeighborRadius, a list of n keywords K = Ky, K3, ...Ky

1. fori=1tondo

: P; = PlacePredict(K;) [* Predict K; in NGramMap*/

3: end for
4: P= n{l(P,') [* sort P;s in increasing number of elements*/
5: ResultSet = {} [*ResultSet contains sets of found places*/
6: fori=1tondo
7
8
9

located = searchNeighbor(P;, i)
if located == TRUE then

: break;
10: end if
11: end for

12: procedure Set(Place) PlacePredict(String keyword )
13: for j = keyword.length() to MinGram do
14: Set grams = NGramBuilder(keyword, j)

15: for each gram g e grams do

16: if NGramMap does not contain g then

17: continue with the next gram

18: else

19: Map(String, Place) hash = nGramMap.get(g)
20: List(Place) candidates = hash.getValues()
21: for each place p e candidates do

22: percent = similarityPercent(g, p.getPlaceName())
23: p.setPercent(percent)

24: end for

25: end if

26: end for

27: end for

28: sort candidates in decreasing order of percent value
29: RETURN candidates

30: end procedure

31: procedure Boolean searchNeighbor(Set S, int keyID )
32: fork = 1to|S| do

33: curResultSet = S[k]

34: Ny, = GNeighbor( Coord(S[k]), NeighborRadius )

35: for (z = 1ton)&& (z # keyID) do

36: if (Ny ([ Pz) # NULL then

37: curResultSet = curResultSet |_J (N () Pz)
38: end if

39: end for

40: if |curResultSet| = n then

41: ResultSet = curResultSet;

42: RETURN TRUE;

43: end if

44: if |curResultSet| > |ResultSet| then
45: ResultSet = curResultSet;

46: end if

47: end for

48: RETURN FALSE
49: end Procedure

51: GNeighbor(anchor A, radius R): returns places within radius R distance from anchor A.
52: similarityPercent(String gram, String placeName): returns the similarity percentage between two input strings
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The text prediction algorithm, as shown in Algorithm 2 , begins by generating vectors of strings, P;, for each keyword,
K; (Line 2). The PlacePredict function in Line 2 returns a set of business places whose name matching the keyword within
searchRadius distance around the anchor point. It performs an approximate match between a set of n-gram words grams
generated by each keyword and the dataset of n-gram words nGramMap pre-constructed in the NDC process. The matching
process is started with the longest gram g in the set grams. If the matching succeeds, the set of corresponding places whose
names contain the gram g is obtained. Otherwise, the matching process continues with shorter grams until it can find the
match.

Since there can be partially correct keywords, we approximately match the text where partially matching keywords or
business names are returned along with a similarity score. As the number of the places predicted by the PlacePredict function
increases, the algorithm will take longer to terminate, increasing system response time. Therefore, we reduce the size of
the result set by computing the similarity percentage percent between the query keyword and its corresponding business
names (Line 22). The similarity percentage is computed using distance which is the minimum number of single-character
edits (insertions, deletions or substitutions) required to change one word into the other. Finally, we return a list of business
places ordered according to their similarity percentage (Line 29).

In the localization phase, we combine these sets of business places to infer the user’s location. Note that, the smaller
cardinality of P; indicates that K; is a less common business name in the area. Therefore, beginning the search in the
neighborhood of a least common K; will converge faster. Hence we sort the P;s based on the cardinality of the P;s (Line 4).

In the procedure searchNeighbor, first a business name, say S[k], from P; is picked in the order they were retrieved. The
GNeighbor function takes as input the location attribute of S[k], and retrieves all the business names around S[k] within
NeighborRadius distance (Line 34). The NeighborRadius parameter is used to find the names which are clustered near each
other and can lead to a solution.

If S[k] is in the area where the user is, then the neighborhood business names vector, N, should contain the rest of the
keywords. Line 37 searches for this match across the remaining sets of (P, )s corresponding to the remaining keywords (K )s.
If all the keywords are matched, the search terminates and the ResultSet contains all the businesses which the user marked
and are in her surroundings (Line 42). We compute a bounding box using all the locations in the ResultSet and assign the
midpoint as the user’s location on the map. However, if S[k] is not in the area where the user is, we try again with the next
business place from the set S. We report failure to localize when there is no place predicted. In case of a failure, the user is
sent a feedback to take another picture, and the process is repeated.

Although the complexity of the algorithm is O(n? |S|), we found empirically that typically 3 keywords are sufficient for
the algorithm to locate a user’s location.

3. WhereAml system implementation

In this section, we present the implementation of WhereAml system. We also discuss different working modes of the
system with respect to power consumption, latency, accuracy and data network usage.

3.1. System implementation

We separate the system into two main components: the front-end is an Android app that runs on mobile devices
(i.e. smartphones), and the backend component is designed as a web service that handles requests from the client app.
The detail of these components are described as the following:

3.1.1. The front-end application

The front-end application is used to collect the input data for the localization process in the backend service. It is mainly
responsible for coarse localization, image capturing, text area highlighting, image segment extraction, request sending,
and location displaying. Depending on the working mode, the WhereAmlI app executes different set of processes. The
partly server-based working mode requires the app to recognize the keywords from the captured image and send only
keyword texts to the backend service for localization. While, the server-based working mode directly sends image segments
containing textual signs to the service. The standalone working mode allows the app to work independently without
connecting to the server.

Since this implementation requires C++ source libraries, we use the Android Native Development Kit (NDK) to compile
the libraries on mobile Android platform. In order to implement the highlighting feature, we use the OpenCV library which
provides all of the image processing functionalities. The implementation of the image fragment cleansing uses the SWT
source code from Kumar and Perrault [17]. Kumar’s implementation additionally requires the Boost C++ libraries,” along
with OpenCV. We use the Tesseract OCR engine,® which provides multi-language capability and has multi-platform support.

2 Boost C++ libraries - http://www.boost.org/.
3 Tesseract - https://code.google.com/p/tesseract-ocr/.
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3.1.2. The backend cloud service

The backend service is mainly responsible for handling requests from the front-end application. There are three types
of requests the service can handle: (i) dataset construction request, (ii) localization request with a set of image segments,
(iii) and localization request with a set of keywords.

Since the dataset construction process is time-consuming, we construct the dataset right after starting the WhereAmlI
app. We implement a service running in the background of the WhereAmlI app to manage the dataset construction. This
service first obtains an approximate location as an anchor location using network location provider. This anchor location is
later sent to the backend server to construct the dataset. When the backend service receives the dataset construction request,
it starts constructing the dataset of business names.

In our implementation, we use both Google Places API and Daum Maps API to access a large database of business names
along with their location coordinates. The reason of using both APIs is that Google Place database has a lack of business
names, compared to the Daum Maps database, which is one of the most popular map service in Korea. Using the anchor
location sent by the user, therefore, we first decide which API should be used to construct the dataset. If the anchor location
is in Korea, we use the Daum Maps API to construct the dataset. Otherwise, we use the Google Places APL

Using these APIs, we implement the NearbySearchByType function in the dataset construction process (Algorithm 1) and
GNeighbor function mentioned in the keyword-based localization process (Algorithm 2). The NearbySearchByType function
allows to search for a specific type of business within a given radius from the anchor location. While, the GNeighbor allows
to search for all business within a given radius for each specific business name.

Although there is a nearby search query supported by the se APIs, but the number of places returned in one API query
is limited (60 for Google Places API, or 45 for Daum Map API). Due to this limitation, the NeighborRadius parameter in the
GNeighbor function must be chosen carefully. If the radius is too small, then the business names extracted from the captured
image may not be considered in the result. According to our preliminary experimental results, we use 20 m as NeighborRadius
in our algorithm.

3.2. WhereAmI working modes

We allow the user to select which localization mode is suitable with respect to power consumption, latency, accuracy
and data network usage. There are three different working modes one can select: Standalone WhereAml, Server-based
WhereAml, and Partly Server-based WhereAml. The detail of these working modes are described as the following:

3.2.1. Standalone WhereAml

The standalone mode is used to allow the user to run WhereAml application without a remote server. In this mode, all
of the processes are executed on the mobile devices. Since the n-gram dataset construction process is time-consuming and
compute-intensive, we run this process simultaneously as a background service in the standalone mode. However, each
mobile device has to collect and store business places into its own database. No data is shared between the users, thereby
the app has to construct the dataset when it reaches a new area.

3.2.2. Server-based WhereAml

In the server-based mode, only the data collecting process and coarse-grained localization process are executed on the
WhereAml app. The text recognition process, n-gram dataset construction process, and keyword-based localization process
are executed on the server in order to reduce the power consumption on mobile device and increase the response time. By
constructing the dataset on the server, in addition, collected businesses can be shared among the users, which can reduce
time required to construct the dataset in the later queries.

We upload the highlighted fragments obtained from the data collecting process at the app to the server. At the server side,
the keywords in the fragments are extracted via text recognition process, and sent to the keyword-based localization process.
In addition, since the n-gram dataset construction process is time-consuming, the anchor location need to be computed and
sent to the server side as the WhereAml app started.

3.2.3. Partly server-based WhereAml

We also give the user an option to execute the text recognition process on the mobile app in cases where data usage is
limited. The only difference between this mode and the server-based mode is that the text recognition process is executed
on the WhereAml app. Instead of sending segment images, which are highlighted fragments, the keywords are extracted
by running the text recognition process on the fragments, and later sent to the server for localization. The bandwidth
requirement in this mode therefore is reduced compared to uploading segment images as in the server-based mode. In
addition, even a short message (SMS) will be adequate to upload the texts.

4. System evaluation

In this section, we evaluate WhereAml with respect to localization accuracy, energy efficiency, latency, and data usage.
We also show the ability to handle incorrect keywords of the localization techniques using n-gram-based text prediction.
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Table 1

Experimental datasets with number of reference places (places) and number

of pictures with n-Keywords (n-K).

Dataset Places 2-Ks 3-Ks Total
New York 52 119 42 171
Seoul 106 217 154 445
New York City Seoul
(Google Piaces APJ) (Daum Maps API)
Fail: 5.28% Fail: 8.47%

Success: 94.72%

Success: 91.53%

Fig. 2. The success rate of WhereAml using correct keywords measured in New York City and Seoul.

4.1. Data collection

We conduct a real walk to evaluate WhereAml with different experimental datasets collected by a Samsung Galaxy J5
phone in New York City and Seoul downtown. In total, we experiment WhereAml at 158 reference places: 52 places in New
York City and 106 places in Seoul downtown.

Since the number of store names affects the system performance, at each reference place we experiment WhereAml
multiple times using different number of store names. The maximum number of store names in each experimental image is
limited to 3 due to the short distance from the smartphone camera to the set of store names.

At each reference place, we first use all of the store names from a captured image as an input set of keywords to compute
the location and measure the localization performance. Next, we repeat this experiment by randomly removing only one
store name from the set. We keep decreasing the number of the extracted store names one by one until the size of the
set reaches to 1. In cases of evaluating the localization accuracy, the experiment is terminated as soon as the location is
found. Table 1 summaries the experimental datasets we used to evaluate WhereAml performance with respect to number
of reference places and number of pictures with different keywords.

4.2. Localization accuracy

We experiment the localization accuracy of WhereAml using both New York and Seoul datasets. We first measure the
success rate of WhereAml to show that the collection of geo-tagged store names can be used as a unique signature for
localization. Next, we measure the localization accuracy to prove that WhereAml can be used as an alternative outdoor
localization method instead of GPS.

4.2.1. A collection of geo-tagged business names can be used for localization

Assuming business names are correctly recognized from the captured images, we measure the success rate of WhereAml
to show that a collection of store names appearing in one image can be used for localization. We also examine how the lack
of business places registered in the databases reduces the success rate of the proposed localization technique. Finally, we
show how the number of keywords affects the success rate of WhereAml, given a condition that the input business names
exist in the dataset.

We assume that OCR works perfectly so that the store names are correctly recognized from the images. We implement
a text input interface in WhereAml such that a user can input the names of the business places for localization. It enables
controlled experiments with or without OCR errors.

Fig. 2 shows that WhereAml can locate a user with an average success rate of about 93.1%, given a set of correct keywords
(store names). Around 7% of the cases, WhereAml fails to identify the user’s location. This occurred due to the fact that some
businesses used in the localization process are not registered in the database yet.

In addition, the success rate of WhereAml experimented in New York City (94.7%) is higher than that observed in Seoul
downtown (91.5%) on average. This occurred due to two main reasons. First, the change or removal of business places in
the Daum Maps database in Korea happens more often compared to Google Places database in USA. Second, some business
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Fig. 3. The success rate of WhereAml increases when the number of keywords increases.

names in Daum Maps database are different as compared to the signs. For instance, many Korean stores registered their
business names in Korean, but their signs are written in English such as Starbucks, MC’ Donald, etc.

Finally, we can see how the number of keywords affects the success rate of WhereAml, given the condition that the input
business names exist in the dataset. As shown in Fig. 3, the success rate of the matching algorithm improves as the number
of keywords increases. When only one keyword is used, and it is not unique in the neighborhood, multiple locations are
returned by the localization algorithm. It is not possible to identify which location is correct. The location, which may not be
the correct location but closest to the anchor location, will be selected.

4.2.2. WhereAml — An alternative localization approach

Next, we measure the localization accuracy of WhereAml. We show that it can be used as an alternative outdoor
localization method in cases where GPS module fails to obtain the location.

Toward this goal, we measure the location using GPS module simultaneously while localization the user using WhereAml.
The location errors of WhereAmlI and GPS module are computed by measuring the distance from the locations returned by
WhereAmlI and GPS module to the ground truth location, which is manually pinpointed on Google Earth. Due to resolution
limits of Google Earth, the ground truth location has an error of up to 0.5 m on average.

Fig. 4 shows a distribution of the localization errors of WhereAml in terms of distances from the ground truth location.
88% cases WhereAml can locate one’s location, while localization fails in 12%. WhereAml fails to locate the user due to
the missing of the store names in the dataset (6.9% cases) and the use of unidentified keywords in the localization process
(5.1% cases). When the store names extracted from the image becomes more erroneous, the text prediction process fails to
identify the keywords. In 10% cases localization error was greater than 20 m. When only a single keyword is used, and it
is not unique in the neighborhood, it leads to high localization error. Since multiple locations are returned by the keyword
matching algorithm, it is not possible to identify which is the correct location. The one closest to the anchor location is
selected, which may not be the correct location. Therefore, the users are required to provide more than one keyword to
improve the localization accuracy.

Next, we show that WhereAml can be alternatively used as an outdoor localization technique by comparing the
localization error (LE) of WhereAml to that of GPS using the following metric, Relative Localization Error (RLE).

LE WhereAml
LE cps

where LEywpeream and LEgps are the distances from the actual location of the user to the locations reported by WhereAml and
GPS respectively. The value of the ratio RLE indicates whether or not the location returned by WhereAml is more accurate
than GPS.

Fig. 5 shows the relative localization error between WhereAml and GPS. When RLE is less than 1, the localization error of
WhereAml is smaller than that of GPS. The figure shows that in about 95% of the cases WhereAml returns lower localization
error compared to GPS. On average, WhereAml achieves mean localization error of about 13.9 m, which is much smaller than
that from the GPS (about 49.6 m). This is because the GPS module computes the location using the raw GPS signals received
at the GPS module of the Android Framework. The received signals are affected by environmental conditions such as high
density of buildings and bad weather condition. Whilst, localization using WhereAml is based on getting the keywords and
successfully matching them against the dataset.

RLE =
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4.3. Power consumption

We measure and compare the power consumption of WhereAml in three working modes: Standalone WhereAml, Server-
based WhereAml, and Partly Server-based WhereAml. We prove that the Server-based WhereAml mode where the text
recognition process, the n-gram dataset construction process, and the keyword-based localization process are executed on
server, consumes less power compared to GPS and the other working modes. Finally, we evaluate the effect of the number
of highlighted fragments on power consumption.

Using Seoul dataset, we measure the power consumption of WhereAmlI using different number of highlighted fragments.
We use PowerTutor to measure the power consumption of WhereAml over 3G network [18]. The measurement is started
from the time when the user starts the application until she receives her geo-coordinates information on her smartphone.

At each place, after measuring the power consumption obtained using WhereAml, we profile the power consumption
of GPS on the same test phone. After the GPS module is called, it starts receiving GPS signals to compute the location. Due
to the environmental conditions, the GPS module waits for the signals until it receives enough information to calculate the
location. Since the power consumption of the test phone fluctuates during the localization process and remains stable after
the localization is successful, we can easily isolate the power consumption of the GPS module.

Fig. 6 shows the power consumption of WhereAml in three different working modes, compared to GPS. On average GPS
consumes 665 mW of power and WhereAmlI consumes 673 mW of power in Standalone mode, 626 mW of power in Partly
Server-based mode, and only 563 mW consumed in Server-based mode. The experimental results show that localization
modes using server consumes 20% less power compared to that of GPS. In addition, Fig. 6 also shows that Partly Server-based
localization consumes more power on the phone than Server-based localization. Although sending a group of texts consumes
much less power than sending crops of fragments, the power consumption required for the text recognition process is much
higher than that required to send the crops of fragments. Thus, offloading workloads to the server could save energy on
mobile devices.
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Next, we evaluate the effect of increasing number of highlighted fragments on power consumption. Fig. 7 shows that
when the number of highlighted fragments increases, the power consumption of WhereAml increases in all working modes.
This occurred due to the fact the text highlighting and fragment extraction are power-consuming process.

4.4. Response time

We evaluate the response time of WhereAml with respect to the dataset construction process and the keyword-based
localization process. We compare the response time of these processes executed on the client app and the server. We also
compute the response time of the localization process with respect to the increasing number of keywords. Finally, the overall
latency of the localization process using WhereAml is compared to that of GPS.

We record the processing time of these processes while measuring the localization accuracy using both New York and
Seoul dataset. The processing time of each process is computed automatically and transparent to the user.

Fig. 8 shows the response time of the n-gram dataset construction process and the keyword-based localization process
of WhereAml on two working modes: on client and on server. As shown in the figure, execution of these processes on client
consumes more time than on server. On average, it takes about 1.7 s to complete the dataset construction on the server side,
while it requires about 6 s to complete the process on the client app. Similarly, the localization process on the server side is
faster than that on the client side.

Fig. 9 shows the effect of the number of keywords on the latency of the localization process. As the number of keywords
used increases, the response time of the localization process increases. In cases where none of the keywords is unique, the
algorithm needs to search for more matches in multiple neighborhoods, hence taking longer. In the worst case, it could take
close to 0.5 s to locate the user. On average, the localization algorithm takes about 59 ms for localization. The localization
process can quickly predict the input keywords and identify the location of the user due to the n-gram dataset is constructed

with a limit number of business names existing in the vicinity.
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Fig. 9. The response time of the keyword-based localization process with respect to the increasing number of keywords.

We also measure how long GPS takes to identify the location. In comparison with WhereAml, the GPS module needs
around 12.5 s on average to complete the localization. GPS takes more time to localize due to the fact that it has to wait
until it receives the satellite’s signal before computing the location. In cases where the satellite’s signal is blocked by an
obstruction or interference, it need more time to complete the localization.

4.5. Cellular data usage

In this experiment, we evaluate how much network data the WhereAml application needs to execute one localization
request in two working modes: Server-based and Partly Server-based WhereAml. We also measure the data bandwidth with
respect to the increasing number of keywords.

Toward this goal, we use Seoul dataset, which consists of images at 800 x 480 resolution on the test phone (Samsung
Galaxy J5). On average, each image has the size of 285 K and each image segment extracted from the capture image has the
size of 11 K. Instead of sending the whole image to the server, we only send image segments for localization.

Fig. 10 shows the data usage of WhereAml while increasing number of keywords in two working modes: Server-based
and Partly Server-based WhereAml. The figure shows that the Server-based mode needs more network data to identify one’s
location, compared to the Partly Server-based mode. The network data usage per one request consists of the input data
uploaded to the server, the location returned from the server, and the data used to load the map with the user’s location.
On average, the Partly Server-based mode needs only 112 K per one request, while the Server-based mode needs 141 K per
one request. In addition, when the number of keywords increases, the data usage in the Server-based mode increases but the
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Fig. 10. Data usage of WhereAmlI with respect to the increasing number of keywords in two working modes: Server-based and Partly Server-based WhereAml.

data usage in the Partly Server-based mode does not increase much. This occurred due to the fact that transmitting a set of
image segments requires more network data than transmitting an array of texts.

We conclude that there is a trade-off between the power consumption and network data usage in the WhereAmlI app.
The more network data is used, the less power consumed on the mobile device. We give the WhereAmlI user an option to
select which objective is most appropriate for the current status of her mobile device. If the phone battery is low, the user
may select the Server-based WhereAmI mode to save battery life on the device, but more data usage is required. Conversely,
when the user is running out of data usage, the Partly Server-based WhereAmI mode is selected to save the data usage, but
more power is consumed on the mobile device.

4.6. Sensitivity analysis

In this experiment, we first present a user study to evaluate how fast users can identify the keywords in pictures. We
also show the performance of the text detection using OCR. Finally, we measure the success rate of the text prediction and
keyword-based localization process as the percentage of errors in input keywords increases.

4.6.1. User study on keyword identification accuracy

We performed a user study to validate the observation that users can quickly distinguish between permanent and
temporary textual signs in a scene, and highlight the permanent signs. We first selected a set of 10 street view images
from Google Street View and Daum Maps. Each image consisted of a mix of permanent and temporary textual signs showing
as names of business. A group of 16 volunteers were individually presented with the images and instructed to highlight only
the permanent textual signs in the image. The volunteers were given a time limit of 15 s per image to highlight the signs.

The results of our study showed that all the users marked the expected permanent business names in the images. There
were only two users who marked temporary signs showing on a vehicle. Overall, the user study supports our human-in-the-
loop approach for text detection.

4.6.2. Text detection accuracy using OCR

We evaluate the accuracy of Tesseract OCR library and show the effectiveness of the cleansing step (image processing)
to improve text detection accuracy. We also generate an error model to represent the extent of error in the text recognition
process with the cleansing process. This model later is used to introduce errors in keywords, which are used to evaluate how
the text prediction process can handle error keywords.

We create our test set by using a mixture of images from the ICDAR datasets, Google street view, web images and images
acquired using WhereAml. Text fragments containing keywords are extracted from these images using WhereAmI's fragment
extraction process. We create a dataset of text fragments which we use to evaluate our text recognition process. In order
to measure the extent of errors introduced by the text detection process, we measure the number of characters that are
recognized incorrectly, and report the percentage error. We conducted two experiments — OCR on image fragments with
and without the cleansing step to determine the usefulness of the cleansing step to improve text detection accuracy using
OCR.
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Fig. 12. The success rate of the text prediction process decreases as the keyword becomes more erroneous.

The results, as shown in Fig. 11, show the cumulative distribution of the percentage error in text detection for the two
experiment scenarios. The figure shows that 37% of keywords in the dataset images could be recognized without any error,
while 75% of the keywords could be detected with at most 34% error (percentage of mismatched characters in the keyword)
using the cleansing step. But without the cleansing step, 34% of keywords could be recognized without any error and 75% of
the keywords could be detected with at most 85% error.

We conclude that the accuracy of the text recognition is improved when the cleansing step is used. For further
experiments, we also fit a curve to the CDF plot showing the error for the text recognition with the cleansing step (SWT
+OCR). This represents the error model (y = —7E-05x% 4+0.013x 4 0.3443) for the OCR process used in our implementation.

4.6.3. Handling errors in keywords using the text prediction process

Although image cleansing process is used before the text recognition, there are still errors remaining in the recognized
keywords. In this experiment, we verify the success rate of the text prediction process while increasing the percentage of
errors in keyword.

We conduct this experiment using 15 test images from the Seoul dataset. Each image consists of at least three store names
existing in the Seoul dataset. For each image, we first record a collection of the store names appearing in the image. Then
we introduce different percentages of errors to each business name to generate incorrect keywords using the error model
obtained in Section 4.6.2. Finally, we send each incorrect keyword to the keyword-based localization process, and record the
result.

Fig. 12 shows how the success rate of the text prediction process is related to the percentage of errors in one keyword. As
the percentage of errors in one keyword increases, the success rate of predicting the keyword decreases. The figure shows
that a keyword with 50% of errors has the success rate of 50%.
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Table 2
Summary of the cases where WhereAml performs more efficiently compared
to other traditional approaches.

Techniques Bad weather Crowded areas Requirements
GPS Bad Bad No

WiFi Independent Independent \WiFi Access Points
.Wardriving process

WhereAml Independent Independent Business name(s)

4.6.4. Handling errors in keywords using the keyword-based localization process

In this experiment, we examine how the keyword-based localization process can handle incorrect keywords. We compare
the success rate of the localization process in two scenarios while increasing of error percentage in keywords: localization
with single incorrect keyword, and localization with multiple incorrect keywords.

Using the same set of images as in Section 4.6.3, we introduce the same percentage of errors (5%) to business names
extracted from one image. We send the set of incorrect keywords to the keyword-based localization process and record the
result. We continue the experiment using the same set of business names, but we increase the error percentage with a step
of 5% and create new sets of incorrect keywords. We do the same experiment with the other sets of business names, and
compute the average of the success rate of the localization algorithm according to the percentage errors.

Fig. 13 shows the comparison of the success rate of the localization using single incorrect keyword and localization using
multiple incorrect keywords. When only one keyword is used in the query, the success rate of the algorithm is low due
to several reasons. First, the input keyword is not unique, and therefore many place names contain the keyword may be
returned. Second, the input keyword is not unique, also spelling errors drive the localization algorithm to irrelevant business
names, which decreases the success rate. Although the text prediction process can improve the success rate in such cases,
the keyword, which is corrupted badly after the recognition process, is not able to be predicted alone. Therefore, localization
using single incorrect keyword returns in lower success rate, compared to localization using multiple incorrect keywords.

5. Discussion

In this section, we discuss the pros and cons of WhereAml. We also summarize the cases where the system performs
more efficiently compared to other traditional approaches.

5.1. Pros

Table 2 summarizes the cases where WhereAml performs more efficiently compared to other positioning approaches. As
shownin Table 2, WhereAml can be used as an alternative localization technique in many cases where traditional approaches
cannot work. For instance, one may be lost either in a crowded downtown area where GPS signals are blocked by obstacles
(e.g. surrounding tall buildings, bad weather) or in a rural area where there is no WiFi access point. Only shop names or
building names are visible to her. WhereAml is able to figure out where she is by asking her to take a picture of surrounding
textual signs. In addition, in unfamiliar areas where the user cannot read the language, the use of OCR engine in WhereAmI
makes it easier to determine the textual signs for localization.
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5.2. Cons

Despite its localization capability, WhereAml has several disadvantages. First, the localization process of WhereAml
cannot perform automatically like other positioning techniques such as GPS or WiFi-based positioning. The system requires
the users to interact with the app by capturing a photo of store names and highlighting the store names in the pictures for
localization. It is inconvenient for the user and sometimes the users do not know which texts he or she should highlight for
localization.

Second, the system does not return exactly the location of the user as other techniques do (e.g. GPS or WiFi-based
techniques), but the locations of store names around the user found on the map. The user has to figure out himself where he
is located on the map using the found store names.

Last, the system sometimes cannot find the store name due to two main reasons. The store may not have registered its
name on the database yet. Also, the store name appearing in the captured picture may be different from the name stored in
the database. For example, the store name shown in the picture is in Korean while it is stored in English and vice versa.

6. Related work

Research on fingerprint based locationing has shown use of different signature modalities for identifying a location. The
signatures are often sensed using mobile device sensors, and then matched against a pre-constructed geo-tagged database
of the signatures. In our work, we focus on the use of images, and specifically on the textual content of the images, as the
signature. Hence in this section, we present our work in relation to three types of signature based locationing: (i) generic
approach using data from different sensors, (ii) use of image features for locationing, and (iii) use of textual signatures in
images.

6.1. Sensor data as signature

A comprehensive survey of different types of modalities for fingerprinting is presented in [ 1]. One of the widely explored
modalities is wireless signal strength that has been applied for both indoor and outdoor localization [19]. A recent work
showed that WiFi hotspots can be used for outdoor locationing [20]. Azizyan et al. showed in their work SurroundSense that
logical labels of a place, represented by the ambient sound, light, color of a place, can be used as unique signature [21].
In UrbanEye, Verma et al. used a mixed set of physical features of the road, like speed-breakers, turns, etc. along with
volatile landmarks, like GSM signal strength, cellular handoff characteristics, to represent the signature of a place [22].
Inertial sensors are used for localization in SmartLoc [23]. Map matching and dead reckoning algorithms are combined in
APT for localization [24]. Dejavu uses different features of road landmarks (i.e. tunnels, bumps, bridges, and even potholes)
as signatures to provide both accurate and energy-efficiency localization [25]. Other works have explored fingerprint-based
techniques to improve the energy efficiency of GPS. For instance, RAPS proposes a rate adaptation of GPS sensing using hints
gathered by inertial sensors [26]. CAPS uses the daily trajectory of users, and cell tower signals to improve over GSM based
localization [27].

6.2. Image features as signature

One of the most intuitive ways of locationing is to match an image to a geotagged image to identify the location. This
requires the user to post an image, which can be matched using different computer vision techniques to identify the
location [2]. The idea was formally captured by the term Mobile Visual Location Recognition [3,6]. As computer vision
techniques advanced, researchers showed improved techniques for extracting features from an image, like SIFT features,
that can be easily compared to identify location [28,29]. Tian et al. showed that given a query street view image it is possible
to use a reference database of geotagged bird’s eye view images for geo-localization using convolutional neural networks
(CNN) [8]. These approaches work on the entire image. They are typically computation intensive and expected to work
offline. Hence these are not targeted for real-time localization with limited resources available on a mobile device.

6.3. Texts in image(s) as signature

Texts presentin a picture often represent business names. If these business names are already geotagged by other business
directories, like Google Places, then those provide a rich source for the signature. It can save time and resource on processing
complex image features, thereby increasing the latency of recognition. The work in [30] extracts the words from in-store
pictures and correlates these extracted words with their corresponding website to recognize the store its user is in. The
system detects the name of the store using a repository of crowd-sourced pictures from different stores, each picture tagged
with WiFi access points. Closest to our approach is the work in [9], which identify one’s location by leveraging a human'’s
perception of her surroundings. They also leverage surrounding textual signs such as street signs, local business logos, public
transportation as cues for localization. Song et al. explored the possibility of a wearable positioning system, HoPS, where a
user can take a picture of the road signs using Google Glass. The system extracts the texts from the image, collects cellular
location information, and processes the text to identify the location [11]. Vo et al. also showed that a collection of business
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names within an area also represents a signature of the area [10]. They could extract the texts representing business names
with some user assistance and localize by matching against geotagged business directories. But inaccuracy in OCR text
recognition limited the performance. This work extended the idea by better recognition of the texts from an image, and
using it effectively for localization.

7. Conclusion

The ubiquitous presence of cameras in smartphones motivates the use of images captured by users for localization.
However, visual location recognition techniques are compute-intensive. In this work, we present WhereAml], a lightweight
localization technique that uses texts appearing together in an outdoor image as a unique signature for localization. We
propose a keyword matching algorithm that can handle partial errors in the detected text by matching approximately to texts
from the database of store names. We have implemented WhereAml on Android smartphones and evaluate its performance
in terms of localization accuracy, power consumption, response time, and data usage. We also prove that WhereAml can be
an alternative outdoor localization system in cases where GPS fails to locate the smartphone users.
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