Scheduling with Task Duplication for Application
Offloading

Arani Bhattacharya*, Ansuman Banerjeef, Pradipta Det
*Stony Brook University and SUNY Korea, {arbhattachar@cs.stonybrook.edu}
fIndian Statistical Institute, {ansuman@isical.ac.in}
iGeorgia Southern University, { pde @ georgiasouthern.edu}

Abstract—Computation offloading frameworks partition an
application’s execution between a cloud server and the mobile
device to minimize its completion time on the mobile device.
An important component of an offloading framework is the
partitioning algorithm that decides which tasks to execute
on mobile device or cloud server. The partitioning algorithm
schedules tasks of a mobile application for execution either on
mobile device or cloud server to minimize the application finish
time. Most offloading frameworks partition parallel applications
devices using an optimization solver which takes a lot of time.
We show that by allowing duplicate execution of selected tasks on
both the mobile device and the remote cloud server, a polynomial
algorithm exists to determine a schedule that minimizes the
completion time. We use simulation on both random data and
traces to show the savings in both finish time and scheduling
time over existing approaches. Our trace-driven simulation on
benchmark applications shows that our algorithm reduces the
scheduling time by 8 times compared to a standard optimization
solver while guaranteeing minimum makespan.

Index Terms—Mobile Cloud, Application Offloading, Code
Partitioning, Mobile System, Optimization, Task Scheduling

I. INTRODUCTION

Mobile devices are constrained by limited compute power.
However, mobile applications are evolving to become more
resource intensive. In this setting, offloading parts of an appli-
cation to remote compute resources such as cloud servers can
reduce response time of mobile applications. While execution
on cloud servers is faster, offloading also requires sending of
program states over wireless network which has high latency.
Thus, for offloading to be useful, careful selection of tasks for
execution on remote servers is essential.

Offloading frameworks model execution of a mobile ap-
plication as a task graph. A task graph consists of a set of
vertices representing the tasks in the application, and a set of
edges representing dependencies between tasks. Each task and
dependency is annotated with one or more cost representing
time or energy. The offloading framework selects tasks for
remote execution at application startup in order to reduce
time and/or energy. Thus, the algorithm used by the offloading
framework to select tasks needs to be fast and has to generate a
good schedule to ensure quick startup and time and/or energy
savings.

In this work, we propose utilizing scheduling using task
duplication for execution on mobile device and cloud server.
Existing application offloading frameworks partition the task
graph into two distinct components for execution on mobile

/ s \\ Distributed Execution
[ataeE” |\ @ S
\ =
\\ / Wireless Network
\\ / Local Execution Cloud Execution

T Mobile System

(1)

Mobile
Application

Code
Partitioning
Algorithm

(2)

Fig. 1: Workflow of an offloading framework. Execution of
a mobile application, represented as a task graph, is profiled
to determine the compute workload of each task. The code
partitioning algorithm uses the profile as input to schedule a
task locally or on remote server.

device and cloud server respectively. In this work, we show
that allowing a limited number of tasks to execute on both
mobile device and cloud server reduces the finish time of
application, or makespan. Moreover, unlike graph partition-
ing, scheduling using duplication can be done in polynomial
time. Thus, our technique of task duplication leads us to an
algorithm that runs in polynomial time and reduces makespan
compared to existing scheduling techniques.

We illustrate the benefit of task duplication with an example.
Fig. 2 shows a task graph, where some tasks marked in gray
must execute locally, while others can be scheduled on the
device or remote server. Time to execute vy, vs, vg locally
is 10ms each, while vy, v4, vs is 20ms each. Assuming
that the remote server is 5 times faster than the device, time
to execute vs, v4, vs on cloud is 4ms. The communication
latency due to data transfer is 10ms for each edge. With
this setting, complete local execution without offloading takes
80ms, where vs and vy can be executed in parallel on a
multi-core mobile processor. Formulating the problem as an
ILP, a solver schedules vy, v3, v5, and vg locally, and vs and
vy remotely, giving a makespan of 78ms. Now, if duplicate
execution is allowed, then vs can be executed both locally
and remotely, thereby saving the time to transfer data for the
dependent tasks vs and v4, where vs is scheduled locally and
v4 on cloud. This leads to a makespan of 70ms, showing the
benefit of task duplication.

Offloading Optimization | Constraint Application Type Solution Type of Scheduling
Framework Objective Parameter pp yp Technique Solution Time Complexity
MAUI [1] Energy Time Sequential ILP Optimal Exponential [O(2")]
CloneCloud [2] Energy Time Concurrent ILP Optimal Exponential [O(2")]
ThinkAir [3] Energy, Time Concurrent Heuristic No performance bound Polynomial [O(n)]
. Subset of . . . 42
Hermes [4] Time Energy concurrent Algorithm Near-optimal Polynomial [O(n*m*)]
Tango [5] Time Concurrent gleur.ls'tlc using No performance bound Constant
uplicate execution
. Dynamic Programming . . 2 o
ATOM (Our Work) Time Concurrent Algorithm Optimal Polynomial [O(m?n?)]

TABLE I: Comparison of different offloading approaches. n and m represent the number of tasks in the task graph and number

of servers in the offloading system respectively.

)
/,

(a) A task graph representing a mobile appli-
cation. Tasks marked in gray must be executed
locally on the mobile device, while the remain-
ing tasks can be scheduled locally or on remote
servers.

U1 Vo U3 Vg | Us s
Mobile device (t?) 10 | 20| 10 | 20 | 20 | 10
Cloud server (tj) [NA| 4 [NA | 4 | 4 | NA

(b) Execution times of each task.

Fig. 2: A task graph along with its parameters. We assume
a single cloud server, with a communication time of 10ms
between the mobile device and cloud server for each edge.

The rest of the paper is organized as follows. Section
IT develops a formulation of the task scheduling problem.
Section III presents the polynomial task scheduling algorithm,
ATOM. Sections IV and V present the evaluation of ATOM
using simulation and real-world application traces respectively.
Related work is presented in Section VI. We conclude in
Section VII.

II. PROBLEM FORMULATION

A mobile cloud computing (MCC) system comprises of a
mobile device (denoted by M) and multiple cloud servers
(denoted by My, where 1 < k < m). We assume that
each of these machines have unbounded number of processors.
Moreover, processors on each machine are homogeneous.

We represent execution of a mobile application as a directed
acyclic graph (DAG) G = (V,E), where the vertex set
V represents the set of n methods or tasks, and the edge
set [E represents the dependencies among tasks. A task v;
may be executed on one or more of the available machines
M (0 < k < m). However, the first task v; and the last
task v, must be executed locally on mobile device My.
Execution of some other tasks may also be tied to the mobile
device, as they may depend on some hardware such as camera,
GPS, etc. Execution of v; on M, takes t;? time. If for a
dependency (v;,v;), v; is executed on a different machine
My, than v;’s machine M, then data associated with (v;, v;)

\Y% Vertex set of the graph

E Edge set of the graph

vj A task in the application execution graph

U1 First task in the application execution graph

Up, Last task in the application execution graph

m Number of servers in the offloading system

n Number of tasks in the task graph

(vi,v;)| A dependency from the task v; to v;

Mo Mobile device

My, A machine with multiple processors

t? Execution time of task v; on machine M,

rzh.k Time to migrate data of (v;,v;) from My, to My,
xf] Decision variable indicating execution of v; on My,
Tf Finish time of v; on My,

SJ’-€ Start time of v; on My,

ij Data arrival time of (v;,v;) on My,

TS Finish time of last task on mobile device, i.e. makespan

TABLE II: Symbols introduced in Section II

must be migrated to M) before v; can begin execution.
Migrating this data takes r/}* time. However, migrating from
a different processor within the same machine is assumed to
take negligible time, i.e. rfjk =0Vk=0,..m,V(v;,v;) € E.
We assume that both execution times t;? and migration times
ritF are obtained by prior profiling of the application.

We define makespan as the time 7)) to finish execution of
the last task v,, on M. We now define the execution finish
time of each task v;. Let T}“ be the execution finish time of
v; on M. Let SF denote the time when execution of v; on
M, starts. Then, the finish time of v; is the sum of start time
S jk and execution time tf:

Vv, € VVE=0,...,m, TF=5F+¢ (1)
To find the start time Sj’? of v; on My, we note that v; can
start when all its predecessor v;’s are available. Let ij denote
the time when data associated with (v;,v;) becomes available
on M. Since each machine M}, has multiple processors, a
task can be executed as soon as its data is available. Thus, the
earliest start time is equal to the highest value of data arrival
time:

Vo; € V,Vk=0,...,m, S¥=

¥ = max D},)

(vi,v;)

For the first task vp, there are no predecessors. Moreover, it
can be executed only on the mobile device M. Thus, for the

first task, we say that start time on M as 0, and all other
machines My, ... as oo:

SV =o,
Vk=1,..m, SF=o00 (3)

The data arrival time of (v;,v;) is the sum of finish time
T,f of v; on any M, and migration time r?jk. However, since
v; can execute on many My;’s, and we are looking for the
lowest possible data arrival time, we have:

k : h o .hk
V(vi,vj) €E,Vk=0,...,m, Dj;= hir(r)nnm(Ti + i)

“4)

Eqns 1 to 4 give us a recurrence relation that computes the

minimum makespan. However, we note that a particular task

v; is only executed on one or more M,’s. Let a:;“ be a decision

variable denoting whether v; is executed on My, i.e.

& 1, if v; is executed on My, and
0, if v; is not executed on Mj,.

Then, we rewrite Eqn 1 in terms of x? as:

ko ¢k if ok
J 0, ifx;?:().

We need to design an algorithm to choose values of xf ’s that
minimizes makespan 7. We utilize the recurrence relation to
design a dynamic programming algorithm.

III. OUR PROPOSED ALGORITHM

Our algorithm starts by assuming that each v; is executed
on machines M,’s. Thus, for each vj;, the output of its
predecessor v; is available on each M. Before execution of v;
on M, begins, we need to determine which M}, can send the
data associated with (v;,v;) the fastest. We store the fastest
time when data of (v;,v;) arrives at My, in Dl’?j and store
the corresponding value of h in a lookup table. When all the
predecessors v;’s have arrived at M, execution of v; can start.
This value of time, equal to the maximum value of ij across
all v;’s, is stored in S;“. The time taken to finish execution
of v;, Tf is the sum of start time SJ’? and execution time t?.
By calculating recursively the finish times of each task, we
obtain the finish time of the last task, or makespan 7{". Once
the makespan is obtained, we use the lookup table to determine
the machines M}, from each output of each predecessor v;’s
was used. This lets us get the execution machines of each task.
The exact algorithm is shown in detail in Algorithm 1. Table
IIT shows the working of the algorithm on our example task
graph shown in Fig. 2.

To analyze the time complexity of ATOM, we first analyze
Procedure CALCULATE-MAKESPAN. We note that the loop
on Line 4 runs n—1 times, once for each task in the DAG. The
inner loop (on Line 5) runs once for each predecessor task, i.e.
the number of incoming edges in the DAG. Let the number of
such incoming edges to a task v; be d;. The loops on Lines 6
and 7 iterate a total of m? times. Within the innermost loop

Algorithm 1 Algorithm ATOM to compute makespan and
obtain execution schedule of an application execution graph. It
accepts a DAG G = (V,E) representing a mobile application
as input. It returns the makespan 7 and decision variable xf
indicating whether v; should be executed on Mj,.

1: procedure CALCULATE-MAKESPAN

22 TP« 19

3 Til — o0

4 for j =2tondo

5: for all predecessors v; of v; do
6: for all £k =0 tom do

7 forall h=0tom do
8 if TF < T/ +r!'F then
9: Dy, < T

10: Lookupfj — k
11: else

12: Df] — Ti’C + T,thk
13: Lookup}; < h
14: end if

15: end for

16: end for

17: for all k=0 tom do

18: SJk — max<”>€E{ij}
19: Ty « SF +t¥
20: if v; is tied to mobile AND k # O then
21: TF ¢ oo
22: end if
23: end for
24 end for
25: end for

26: end procedure
27: procedure GET-SCHEDULE

28: Set all values of = to 0

29: 20 1

30: for j =nto 2 do

31: for all predecessors v; of v; do
32: for all £ =0 to m do
33: if xé‘ =1 then

34: h « Lookupfj
35: zh 1

36: end if

37: end for

38: end for

39: end for

40: return x

41: end procedure

on Line 7, each step requires constant (O(1)) time. Thus, total
number of steps to run the procedure is given by:

Ti(n) = i & = O(m?[E)).

Similarly, Procedure GET-SCHEDULE also has an outer loop
running n — 1 times, and an inner loop for each prede-
cessor. Each inner loop requires m number of times. Thus,
time complexity of Procedure GET-SCHEDULE, T3(n) is
also O(m|E|). Therefore, time complexity of our proposed
algorithm is given by:

T(n) = Ti(n) +T2(n) = O(m?[E|) + O(m|E|) = O(m?|E|).

Since the number of dependencies is of the order of O(n?),
this gives us a time complexity of O(m?n?), where m and n
are the number of servers and number of tasks respectively.

%;lsrlient %r;iecessor Data Arrival Time |Start Time ;roec;enc(:;s((ﬁ Finish Time| Data Arrival Time (Sjtlilrrrterll;in'll"zs(lif l];;)ect?euc(:;szi Finish Time

vj v; ng S? Lookupgj T]Q Dilj S]l Lookup%j le
v U1 10 10 Mobile 30 20 20 Mobile 24
v3 V3 min(30, 22 + 10) = 30 30 Mobile 40

V4 V2 min(30,22 4+ 10) = 30 30 Mobile 50 min(30 + 10,24) = 24 24 Cloud 28

V3 40 Mobile 40 + 10 = 50 Mobile

vs ve Tmm(s0, 28 F 10y =38 0 Cloud 60 b3 >0 Cloud 4
Vg vs min(60,52 4+ 10) = 60] 60 Mobile 70

TABLE III: Table to minimize makespan of task graph shown in Fig. 2 used by Algorithm 1

We now explain how task duplication reduces makespan
in our algorithm. First, we note that a task is duplicated
only when new threads are spawned. When a new thread is
spawned, one thread may be faster on the mobile device, while
the other thread is faster on cloud server. In this case, executing
one or more tasks preceding the spawning of the thread on both
mobile device and cloud server may be faster. For example,
in Fig. 2, a new thread is spawned at vs. Thus, vy has two
outgoing edges connecting vs and v4. If we execute vy only
on M, (mobile), then migrating (ve,v4) and then executing
vy on M is slower than executing only vy on M. Thus,
vy also executes on mobile device. If we execute vy only on
M (cloud server), then migrating (vs,vs) back to My slows
down execution of v3. On the other hand, if we execute vy on
both My and M, this allows execution of v3 to start much
faster, and also does not require migration of (vq, v3).

Another major advantage of allowing task duplication is that
it results in a polynomial algorithm. This is because allowing
the same task to execute on multiple machines M), allows
us to divide the entire scheduling of task graphs into smaller
scheduling problems. For example, in Fig. 2, it is possible
to separately schedule the tasks vy, vo, v3, vs, vg In one
step, and vy, va, V4, Us, Vg separately in another step. If
any v; is scheduled on two different machines M, and My,
then it can be executed on both. Since scheduling a linear
sequence of tasks is polynomial, using task duplication reduces
the problem to a series of polynomial problems. Thus, the
overall scheduling problem also becomes polynomial when
tasks duplication is allowed.

IV. SIMULATION-BASED EVALUATION

In this section, we compare ATOM with schedules generated
by Integer Linear Programming (ILP), Tango [5] and local
execution. We implemented the ILP (discussed in Section
II), Tango and ATOM on an Intel Xeon (CPU: E5-2630) 6-
core processor system in Java (openJDK 1.7) programming
language. We generated call graphs of different sizes ranging
from 10 to 100, with each size of call graph having 100
random samples each. We study different performance pa-
rameters like makespan, scheduling time, energy consumption
and memory footprint of scheduling algorithms. We use Java
ThreadMXBean interface to measure scheduling time, the
energy model discussed in Section II to measure energy
consumption and Java Instrumentation to measure memory
footprint [6].

A. Performance Comparison

1) Makespan: We compare the makespans of different
algorithms. Fig. 3(a) shows the makespan for different number
of tasks in the application graph. We note that ATOM provides
the smallest makespan, followed by Tango, ILP and local
execution. This is because ATOM always provides the optimal
makespan, and thus its maskespan must be the smallest across
different methods for any given application.

2) Scheduling Time: Fig. 3(b) shows the scheduling time of
ATOM and ILP for different number of tasks from 10 to 100.
We omit Tango and local execution here since these techniques
do not need to run any scheduling algorithm during startup.
We note that for smaller applications with less than 40 tasks,
an ILP is faster. For larger applications, the scheduling time of
an ILP increases rapidly. This is because solving an ILP takes
exponential time, whereas ATOM is a polynomial algorithm.

3) Energy Consumption: Fig. 3(c) shows the energy con-
sumption using the four different methods. We note that
an ILP consumes the least amount of energy, followed by
ATOM, local execution and Tango. This is because ATOM
uses task duplication to save time. However, this consumes
additional energy on mobile device, since this requires both
local execution and migration. Thus, Tango consumes the
highest energy, since it duplicates all tasks on both mobile
device and server.

4) Memory Footprint: Fig. 3(d) shows the memory foot-
print of ATOM and ILP. To account for the large differences
in memory footprint, we plot it on a logarithmic scale. We
once again note that running ATOM consumes much smaller
memory than an ILP. This is because an ILP formulation
requires storing a large matrix as input. The space complexity
of ATOM is linear with additional memory only being used
to store the start times, finish times and execution platforms
of each task.

B. Effect of Task Duplication

We now study the amount of task duplication performed by
ATOM, and its effect on the makespan. We note that unlike
general DAGs, tree-structured graphs do not require any task
duplication to minimize makespan. Thus, we generate random
general DAGs for these experiments.

1) Makespan: To understand the effect of task duplication
on makespan, we utilize the formulation described in Section
II. In the formulation described in Section II, we add an
additional constraint to ensure that no task redundancy is used:

0 eV,Zz§:1 (5)
k=0

—»— ATOM
-& Tango
- e Local
——ILP

5.000

4,000

3,000

2,000

Makespan (ms)
Scheduling Time (s)

1,000 |

0k

. \ , . | . , . .
20 40 60 80 100 20 40 60 80
Number of Tasks Number of tasks

(a) Makespan (b) Scheduling Time

. . . .
8,000 || — ATOM E . ||—ATOM
... Local g 0. e El
----- Tango = Lttt
6,000 | — 2 10tk s]
S ILP E
= £ ot
% .
g 1000 g o0E El
53] > R
S el J
2,000 5
= E
o , , ,

. \ \ . .
100 20 10 60 80 100 20 10 60
Number of tasks Number of Tasks

(c) Energy Consumption (d) Memory footprint

Fig. 3: Comparison of makespan, scheduling time, energy consumption and memory footprint of ATOM, ILP, Tango and local

execution.

4,000 et

3,000 - 10l

2,000 -

Makespan (ms)

- Latency = 100 ms
—e— Latency = 150 ms
0 - - Latency = 200 ms ||

1,000 -

Proportion of Tasks Duplicated (%)

-e 1P ||
e ATOM
T

. . . \ | N T
20 40 60 80 100 0 1 2 3 4
Number of Tasks

Average degree of parallelism

(a) Makespan (b) Makespan

Fig. 4: Comparison of makespan of ATOM with an ILP
formulation to obtain the effect of task duplication. The ILP
formulation does not use task duplication.

We then compare the makespan given by the ILP with ATOM.

Fig. 4(a) shows the difference in makespan using the ILP
and ATOM for different number of tasks. We note that ATOM
has a lower makespan than the ILP in each case. Moreover,
the difference in makespan increases with an increase in the
number of tasks. Thus, for 10 tasks, ATOM has 12% lower
makespan than the ILP. For 100 tasks, this increases to 25%.

This observation is explained by noting that task duplica-
tion reduces makespan. The increase in time saving with an
increase in size of DAG also shows that task duplication saves
more time for larger DAGs. This is because larger graphs have
more scope for exploitation of parallelism, which can be better
exploited with lower costs using task duplication.

2) Amount of task duplication: Fig. 4(b) shows the amount
of task duplication performed by ATOM for different amounts
of available parallelism. We note that when out-degree is equal
to 1, the application is completely sequential. Thus, no task
duplication is used. The amount of task duplication reaches
a peak of around 10% when the maximum out-degree is 5.
Further increase in out-degree of tasks slightly reduces the
amount of task duplication.

This observation confirms that task duplication reduces
makespan by reducing communication cost of parallel exe-
cution. When there is more concurrency in the application,
more parallelism can be utilized by utilizing more duplication.
Thus, when more threads are spawned, the task amount of
duplication increases.

V. TRACE-BASED EVALUATION

We perform trace-driven simulation on benchmark pro-

| grams, and compare its performance with other algorithms.
| To obtain traces from any available Java program, we utilize

aspect-oriented programming using Aspect] framework [7].
Aspect] allows programmers to add additional code at the call

~ points of each method through bytecode-level modifications.

We use Aspect] to obtain the traces of each method call.
We also serialized arguments of each method and printed
the size of arguments. This gives us the amount of data
required to migrate at any particular call point. Finally, we
calculated the time taken to execute each method using Java’s
ThreadMXBean interface [6]. We use these data to annotate
the call graph. We identify the methods that require access to
user input or output device (such as println method) as native.

We perform our experiments on nine selected SPEC JVM
benchmarks [8]. The nine benchmarks are selected because
they mirror mobile workloads. Thus, we use traces of SPEC
JVM benchmarks to get results that are representative of those
on real workloads.

A. Makespan

To understand the effect on execution time, we obtain the
makespan or application finish time using ILP, ATOM, Tango
and local execution. We use a constant bandwidth of 1 Mbps to
run our traces, and a round-trip time (RTT) of 50ms. Fig. 5(a)
shows the effect of the four methods on makespan. We note
that ATOM reduces the makespan by 15% compared to local
execution, and 10% compared to Tango. Moreover, ATOM and
ILP gives us almost the same makespan in each case.

B. Scheduling Time

We now compare the scheduling time of ILP and ATOM
in Fig. 5(b). We note that the average scheduling time is less
than 0.2s for ATOM. This is much lower than an ILP, which
requires an average of over 1s of scheduling time. ATOM
reduces the average scheduling time of applications by around
8 times.

VI. RELATED WORK

To systematically study the varieties of job scheduling
problems, they are classified based on machine architecture
(a), task model (5) and optimization objective () [9]. This

80 100

1,000

B0 Local
I Tango
InATOM [
In 1p

600 [5

800 -

400 |- y

Makespan (ms)

200 y

compress
crypto.aes
crypto.rsa
crypto.signverify
scimark.fft.small
scimark.lu.small
scimark.sor.small
cimark.sparse.small
cimark.monte-carlo

@

InLocal I nTango

Scheduling Time (s)

%)
17
=
o
g
=}
o

crypto.aes
crypto.rsa
crypto.signverify
scimark.fft.small
scimark.lu.small
scimark.sor.small

cimark.sparse.small
scimark.monte-carlo

@

Fig. 5: Comparison of energy consumption of SPEC benchmarks using ILP, ATOM, Tango and local execution.

classification scheme is referred to as «|f|y model, based
on the three parameters of classification. We explain related
scheduling algorithms in the context of this scheme.

In our machine architecture, communication costs differ
based on the execution platform of each processor. This is
known as a cluster machine model, and is denoted by P(a,b).
Here a denotes the number of clusters, and b represents the
number of processors in each cluster. Thus, in our case, a = 2
and b = oo. Precedence constraints between tasks are denoted
by prec, and task duplication is denoted by dup. The objective
is to reduce the makespan or schedule length of the last
task on mobile device T37. Thus, this problem is denoted
by P(2, c0)|prec, dup|makespan. Most previous studies have
proposed scheduling algorithms for machine models that are
either completely homogeneous or heterogeneous.

Existing Mobile Cloud Computing frameworks fall into two
categories based on their scheduling techniques. MAUI [1] and
CloneCloud [2] utilize an Integer-Linear Programming (ILP)
solver to optimally schedule tasks in exponential time. The
alternative approach, used by ThinkAir [3], utilizes heuristic
to schedule tasks. This has a low time complexity, but does not
guarantee minimization of time or energy. Hermes [4] presents
an approximation scheme to minimize makespan within a
given energy budget. Tango [5] uses duplicate execution of
all possible tasks on mobile device and server to speed up
applications. Our algorithm ATOM combines the advantages
of Tango and ILP by guaranteeing minimum makespan while
having low time complexity.

VII. CONCLUSION

Mobile devices continue to be limited by their compute
power. In this setting, offloading parts of the application
to resource rich remote servers can enable wide class of
applications. Typically offloading algorithms were designed as
optimization problems solved as Integer Linear Programs, or
using heuristics, thereby lacking performance guarantees, and

may scale poorly. We show that allowing duplicate execution
of a few selected tasks leads to a polynomial time scheduling
algorithm that minimizes the total completion time of an
application. Our algorithm ATOM (Algorithm for Time Opti-
mization on Mobiles) determines a schedule to execute tasks of
a concurrent application with duplication such that makespan
is minimized. Our simulation and trace-driven experiments
show that ATOM significantly reduces makespan and energy
consumption while executing in polynomial time.

ACKNOWLEDGEMENT

This research was funded by the MSIP, Korea, under the
”ICT Consilience Creative Program” (IITP-2015-R0346-15-
1007) supervised by the IITP (Institute for Information &
Communication Technology Promotion).

REFERENCES

[11 E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49-62.
B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011, pp. 301-314.
S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in INFOCOM, 2012 Proceedings IEEE. 1EEE,
2012, pp. 945-953.

[4] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,” in
Proceedings of INFOCOM. IEEE, 2015.

[S] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M.
Mao, “Accelerating mobile applications through flip-flop replication,” in
Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2015, pp. 137-150.

[6] “Threadmxbean (java se 7),” http://docs.oracle.com/javase/7/docs/api/.

[7]1 G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold, “Getting started with aspectj,” Communications of the ACM, vol. 44,
no. 10, pp. 59-65, 2001.

[8] “Specjvm2008,” https://www.spec.org/jvm2008/.

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimization
and approximation in deterministic sequencing and scheduling: a survey,”
Annals of discrete mathematics, vol. 5, pp. 287-326, 1979.

[2

[

3

—

