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Extending Video Playback Time with Limited
Residual Battery
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Abstract—In this letter, the performance of battery-aware
based rate adaptation for video streaming on mobile devices is
evaluated. Complementary to conventional channel-aware based
rate adaptation, the proposed scheme jointly adapts, to address
the effects of time-varying wireless network conditions as well
as, the residual battery on mobile devices. Numerical analysis
and simulations conducted under various network conditions
and residual battery levels, show the potential of the proposed
adaptation scheme to extend video playback time by 40% in
comparison to the conventional adaptation scheme.

Index Terms—Rate adaptation, residual battery, power con-
sumption, mobile devices, video streaming.

I. INTRODUCTION

IDEO streaming process can consume significantly high

battery power on mobile devices as video contents
consist of larger data size in comparison to other Internet
applications such as emails and web pages. With the Internet
video streaming and downloads dominating more than 72%
of the total Internet traffic by 2019!, an increasing demand
on battery usage is inevitable. In comparison to the advances
in processor, graphics and display capabilities of high-end
mobile devices, the current development in mobile devices’
battery technology is still slow and insufficient to keep up with
the mobile technology growth. Hence, this serves as a strong
motivation for finding a solution to dynamically increase the
battery lifetime in devices to stream video.

A major drawback with the traditional HTTP-based pro-
gressive video streaming is the inability to adapt gracefully
towards varying network conditions, causing frequent stalling
and buffering during streaming. HTTP adaptive streaming
(HAS) technology was specifically designed to solve this
issue by adapting the video to the current network conditions.
To date, HAS remains one of the most popular streaming
techniques used by major content providers such as YouTube
and Netflix. However, most of the current HAS solutions,
as mentioned in [1], [2] and [3] are developed mainly to
optimize the video quality during playback but not the energy
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consumption. In addition, the adaptation process in HAS is
solely based on bandwidth measurements and buffer levels
without considering the mobile device states itself. Thus,
the novelty of our proposed mechanism is, we introduce
the mobile device battery level as a new parameter in the
adaptation process for video streaming on mobile devices.

This letter is organized as follows: Section II delineates our
proposed adaptation system model and algorithm. Performance
analysis results in Section III demonstrate the efficiency of our
approach. We analyze the trade-off between the rate reduction
and the video quality in Section IV. Finally, we discuss the
conclusion in Section V.

II. RAB SYSTEM MODEL

In this section, we describe our approach towards battery ef-
ficient video streaming on mobile devices. Fig. 1 illustrates the
proposed rate adaptation with battery awareness (RAB) system
model. The adaptation process is performed at the base station
(BS) with the help of edge server being deployed at the BS.
The server is responsible to cache the content and performs
the content adaptation for faster delivery to the mobile devices.
We adopt the multi-rate, layer-based scalable video coding
(SVC) scheme in our RAB’s implementation for easier video
adaptation. SVC is an extension of H.264/Advanced Video
Coding (AVC) scheme and is able to support video streaming
in a more heterogeneous (large-scale multi-user mobile video-
streaming) scenario [2]. During the streaming period, RAB
mechanism periodically monitors, updates the User Equipment
(UE)’s battery level and dynamically adapts the transmission
rate based on the new optimized rate until the battery depletes
or download process finishes. In the following subsections, we
summarize the construction of RAB power model based upon
the existing Long Term Evolution (LTE) smartphone power
model from [4].

A. LTE Power Model

For theoretical analysis and comparison, we use LTE UE
power consumption model proposed in Lauridsen et al. in [4].
The model covers the LTE cellular subsystem and the overall
power consumption P, is defined as:

Pcell = Meon X Pcon +Mjdie X Pidle +Mmprx X PDRX (1)

where m is a binary variable describing whether the UE is in
Radio Resource Control (RRC)_connected (con), RRC_idle
(idle), or Discontinuous Reception (DRX) mode. The P value
describes the power consumption in the given mode as a
function of mode specific parameters. The power consumption
model of RRC_connected mode is divided into transmitting
(Tx) and receiving (Rx) Base Band (BB) and Radio Frequency
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Fig. 1. RAB system model.

(RF) functional blocks. Each block defines the power con-
sumption as a function of either Tx or Rx power levels (S)
and data rates (R) as shown in Eq. (2).
Peon = Pop + Mgz X (Pro + PreBB(RR2) + ProrF
(Sre))] + [m7e X (Pre + PraBs(Rre) + Prerr(St2))]

The constants P,,,, Pr, and Pr, describe the power consumed
when the cellular subsystem is ON, the receiver is actively
receiving and the transmitter is actively transmitting, respec-
tively.

B. RAB Power Model

2)

Using the LTE UE power consumption model presented
in the previous subsection as a reference, the RAB power
consumption model can be defined as:

PraB = Prz + Pra 3

where Pp, and Prp, represent UE’s receiving and transmitting
power consumption respectively. In this model, we introduce
a new parameter, Rp,, as the bit rate corresponding to the
equivalent residual battery level, (.

First, for modeling the Pg,, we define Ry, as the resulting
bit rate received for UE as a function of its battery level and
channel condition, Rg, = f(«a, 3). With « being the channel
conditions and 8 € [0, B4, being the uniformly generated
residual battery level. For every value of v and 3, there will be
a corresponding bit rate, which needs to be adapted to meet
the UE’s battery constraints. The instantaneous received bit
rate is given as:

RBatt (t) ’
RRe(t) =
wi = {3
where R..(t) be the bit rate corresponding to equivalent « and
Rpai1(t) be the bit rate corresponding to equivalent 3 at time
t. Eq. (4) can be simplified as:

Rp:(t) = min {Rec(t), Rpatt (t)} (5)

Rpate(t)
0< Rty =1
otherwise

4)

Then, the corresponding power consumption per bit for each
rate, P, r; can be calculated in terms of Rr, as:

Py_ra(t) = P(RRra(t)) = P(min{Rcc(t), RBare(t)})  (6)

Here, we have to consider the power consumption in cases
when the UE has to receive contents with different sizes
depending on the minimum bit rate selected in Eq. (6). We
adopt the method proposed in [5] for combining packets of
more than one size to calculate the total power consumption
per bit in the UE. The total power consumption per bit for a
downlink period of T' can be estimated as:

S0 Po_pe () min{Rec(t),Rpate ()} (7)

Pre = STy min{Ree(t), Rpare ()} °

Algorithm 1 RAB Algorithm

Input: UE’s location, UE’s residual battery level 3
Output: Receiving bit rate Rg,, UE’s power consumption Prap
Video request initialized by UE to Server
while Video download not complete do
procedure RAB EXECUTION - EVERY ¢ SEC
Get UE’s location and calculate distance from BS
Calculate SINR
Determine CQI Index based on calculated SINR
Determine MCS based from CQI Index: QPSK, 16QAM or 64QAM
Determine rate R.., based upon MCS and RB allocation
Determine rate Rpq¢¢, based upon 3:
if B € Biow* then Rpatt = Riow
else if 5 € Bnea* then Rpait = Rimed
else (i.e. B € Brigh*) RBatt = Rhign
end if
Select minimum bit rate: Rr, = min {Rce, RBatt}
Calculate UE power consumption: Pr 4p = Mapped to Rra

end procedure
end while

* In our analysis, we define /37,4, to be within the range 0 < Bjow < thiow With
the minimum battery level threshold thjs.,, is set to be 30%. B,,cq is defined as
thiow < Bmed < thmed and Brign is within the range of thiped < Brigh <
thpign with medium threshold th,,cq and the maximum threshold thy, ;4 are set
to be 80% and 100% respectively.

In typical TCP-based video streaming applications, although
the majority of the video traffic is transmitted to the mobile
devices in the downlink, it also involves uplink transmissions
of TCP acknowledgement (ACK) from the mobile devices.
The ACK transmission involves additional device power con-
sumption Pr,, which needs to be analyzed. This is our second
component in RAB power consumption model and could
be estimated using a similar approach, with an additional
constraint that the maximum power allowed for transmission in
LTE environment is limited to 250 mW. Thus, the UE’s power
consumption per bit value for each rate during transmitting can
be expressed as:

Porot) = lm P(RTm(t)) —_lim

—Promaas —Pramaas

P(min {Rec(t), Rpau(t

) ®)

where Prime: = 250.0 mW and Ry, is the transmitted bit
rate. Total transmitting power consumption per bit is defined

as:
SL o Py rs(®)-min{Rec(t), Rpar ()}
Pra = STy min{Rec(t), Rpare()} ©)

Algorithm 1 outlines our proposed rate adaptation scheme.
Firstly, the distance, d between the UE and the serving BS
is calculated based on the UE’s co-ordinate. The channel
condition for transmission is determined based on the Signal
to Interference plus Noise Ratio (SINR) and can be estimated
in terms of distance as [6]:

Ppsp/Xo

Ty L)+

(10)

where Ppg, is the target BS’s downlink power and BSy
indicates the neighboring BSs. A\ = d710°/'° is the downlink
path loss, where 1 € [4,8] and s represents the shadowing
variable. The A\g and \; refer to the path loss between UE and
target BS and the path loss between UE and other neighboring
BSs respectively. The I and 1 represent the corresponding
interference and noise elements respectively.

The calculated SINR value is then mapped to the equivalent
Channel Quality Indicator (CQI) index. CQI index depends on
the antenna configurations (single or multiple) being imple-
mented for transmission. The BS then decides the appropriate
Modulation and Coding Scheme (MCS) to encode the video
content. In addition to MCS, the suitable transmission rate
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TABLE I: Simulation Parameters

Simulation Parameters

Number of UE(s) 1-5

BS radius coverage 300 m
Number of neighboring BSs 8

Number of RB allocated [5, 95]

RB scheduling (for multiple UEs) Round Robin
Simulation time 300.0 sec
Nominal device battery voltage 38V
Device battery capacity 2600 mAh
Carrier frequency, f. 20.0 MHz

is also depended upon the available resource blocks (RBs).
An increase in the current number of active UEs in the
cell will result in lower transmission rate as lower amount
of RBs has to be allocated and shared per UE. The power
consumption Pr4p, is calculated by opting for the minimum
bit rate selected between R.. and Rp.:. The BS executes the
algorithm using the new inputs and determines the best rate
for transmission. The BS conveys the new selected rate to UE
and continues resuming transmission at the selected rate.

III. RAB PERFORMANCE ANALYSIS

In this section, we compare the performance of our proposed
approach with the existing channel-based approach through
simulation and real-time experiment.

A. Simulation-Based Performance Evaluation

We evaluate RAB under two scenarios; stationary and
mobility analysis. The simulation parameters are presented in
Table 1. In stationary analysis, UE with a limited 8 (6%),
although experiences a good channel quality, can now stream
in reduced rate, consumes less energy and is able to extend the
battery life further as shown in Fig. 2a. After five minutes of
continuous streaming, the total energy consumption with RAB
is only 0.8 kJ, almost 64% less consumption as compared to
2.3 kJ without RAB. In Fig. 2b, UE with a high 8 (86%)
but streams under an average CQI index condition, consumes
around 0.7 kJ, almost the same amount of energy consumed
in UE in Fig. 2a. The results indicate that even with low [,
a UE can still be able to stream for a longer duration almost
similar to a UE with high 3, albeit in reduced rate.

For a more accurate evaluation, we add a real-time mobility
trace in our simulations. We collect data trace of a personal
mobile phone records stored by Deutsche Telekom in 20097
We evaluate data recorded on Aug. 31st., 2009 for five hours
duration between 8.09 am until 1.07 pm. Our analysis is based
upon the assumption that the mobile device was not recharged
during the entire downloading process as the user traveled.

The following Eq. (11) [7] is used to estimate the battery
discharge 8;, and the battery life f3;, in our simulation.

B4 [mAR] = &/ (vt), B, [hr] = Bv/P, (11)

where ¢ is the average energy, v is the nominal voltage of the
mobile device and ¢ is equal to 3600 sec. 3 and P represent
the residual battery level and the average power consumption
respectively.

Fig. 3 shows the RAB performance with added mobility
trace. In Fig. 3a, the analysis is performed with the UE having
an initial 5=50% at the beginning of the downloading process.

Zhttp://crawdad.org/spitz/cellular/20110504

TABLE II: Power Model Validation.

Power

Time Bit I:ate consumption (W) Error
(sec) (Mbit/s) Measured Simulated (%)
0 2.0 1.23 1.14 7.3
200 2.0 1.27 1.14 10.2
400 1.8 1.23 1.10 10.6
600 0.2 1.02 0.93 8.8

RAB is able to maintain a lower average power consumption
(1.68 W) in comparison to the conventional scheme (2.03
W), as depicted in Fig. 3a. In Fig. 3b, RAB’s performance
is tested with UE having different initial s between 10%-
50% as download process begins. With RAB, UE is able to
stream longer as compared to the existing scheme.

In Fig. 4, it is observed that RAB selects the less-energy
consumed rate for downloading to match the battery levels
in UEs. The results show that a UE with a limited residual
battery is able to extend the viewing time for almost as the
same duration as UEs with higher battery levels, albeit in
reduced rate and lower quality streaming. For instance, UE
with 5=100% can view a video for more than 200 minutes
in high resolution video quality, and correlatively, UE with
initial 5=50% at the beginning of the video playback can also
be able to view a video for almost the same duration until its
experiencing a battery outage, but in a lower quality video.
This explains why the playback times are almost equal for all
the three different 3 cases. Fig. 4 also shows that RAB is able
to extend the video viewing time by 40% in comparison to
the existing adaptation scheme.

B. Experimental-Based Analysis

To verify the gain of RAB implementation, we perform
experiment to measure the power consumption in real-time
streaming. Our experimental setup includes a mobile device
installed with an Akamaiplay video streaming software ap-
plication. “Akamaiplay” application allows video content to
be downloaded and streamed from the geologically nearest
(Content Delivery Network) CDN or Akamai® server installed
at the local BS. The mobile device is an Android 4.2.2
SAMSUNG S4, GT-19505 with Quad-core 1.9 GHz Krait 300
processor and 2 GB RAM. The nominal battery voltage is 3.8
V with a battery capacity of 2600 mAh. The measurements
are taken with Bluetooth/GSM/Wi-Fi interfaces disabled and
minimal background application activity. We choose an open
source, high definition video file, Big Buck Bunny* for our ex-
periment. The video play duration is 596 seconds. The device’s
battery is not recharged during the whole streaming duration.
We monitor the device’s battery power every 200 seconds and
change the video quality from high (2 Mbit/s) to low (200
kbit/s) during streaming process. We then measure the average
power consumption using the Power Tutor software installed
on the device. The experiment is then repeated under the
same controlled scenario and parameters, except that the video
streaming is now performed normally without considering
the device’s battery level during streaming. Fig. 5 shows
the comparison of the measured average power consumption
between RAB and the conventional video streaming technique.

3http://www.akamai.com
“http://www.bigbuckbunny.org/
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For a duration of 600 seconds, it is observed that RAB-based
streaming scheme can reduce the power consumption by 10%
as compared to the conventional streaming scheme.

To validate the power model and our simulation, we com-
pare the measured power consumption gathered from ex-
periment with our simulation results based on RAB power
model and the theoretical results based on the LTE power
consumption model presented in Section II-A. Fig. 6 shows
the comparison of the average power consumption using the
three measurement methods. The error percentage between the
measured power consumption and the simulation is maintained
at low range between 7% to 11% as presented in Table II.
Since our power model focuses on radio power and ignores
the impact of the UE’s processor, graphics and display, the
total power consumed is slightly underestimated.

IV. BIT RATE AND QUALITY TRADE-OFF ANALYSIS

In this section, we assess the trade-off between the bit rate
adaptation and the perceptual video quality using Structural
Similarity Index Metric (SSIM). SSIM measures the similarity
between two images and considers the image degradation as
perceived change in structural information. The measurement
is performed by comparing the original high resolution image
(reference image) with the images which are encoded in
different or in lower resolutions or bit rates. In our case, we
use image segments taken from two open source videos: (i)
Big Buck Bunny* and (i) Transformers 4° as test images.
The videos are re-encoded into eight different quality levels
ranging from low resolution (200 kbit/s) to high resolution
(4 Mbit/s). We use MSU Video Quality Measurement Tool
software to measure SSIM. The SSIM is defined as [8]:

SSIM =1(f,g) c(f,9) s(f,9)s (12)
where . o ) ‘o o
I(f.9)= %76(][79) = %us(ﬁg) = % 13)

The first term {(f, g), is the luminance comparison function,
which measures the closeness of the two images’ mean
luminance (u; and pg4). The second term c(f,g), is the
contrast comparison function. This function measures the
closeness of the contrast of the two images, based on the
standard deviations ¢ and o4. The third term s(f, g), is the
structure comparison function, which measures the correlation

Shttps://www.youtube.com/watch?v=LMMP4ILcall

coefficient between the two images f and g. The oy, is the
covariance between f and g. The positive values of the SSIM
index are in [0,1]. A value of 0 means no correlation between
images, and 1 means that f = g. The positive constants C',
C5 and C5 are used to avoid a null denominator. We set the
minimum acceptable threshold of SSIM index to be 0.5 [9], as
denoted by the red line in Fig. 7. An image which has SSIM
index lower than 0.5 is considered a very poor quality image
and is unsuitable for viewing.

The results in Fig. 7 show the effect of varying the video bit
rates on SSIM index. As predicted, reducing the bit rate causes
degradation on the perceived quality of the video images. As
we vary the bit rate, the SSIM index also varies between
0.77 to 0.99. However, the SSIM indices are still above the
acceptable threshold level, 0.5 and we can still maintain a good
video quality level even in lower picture resolutions.

V. CONCLUSION

This letter has introduced a mobile video streaming adapta-
tion scheme which jointly considers both the network condi-
tions as well as the mobile battery level. By always comparing
and choosing the minimum bit rate for transmission, the
proposed RAB has the potential to maintain a lower power
consumption on mobile devices. Through extensive simulation
and experiment, it has been demonstrated that our adaptation
approach can prolong the playback time by 40% while main-
taining a good quality level during video streaming.
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