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ABSTRACT
Mobile devices like smartphones can augment their low-power pro-
cessors by offloading portions of mobile applications to cloud servers.
However, offloading to cloud data centers has a high network la-
tency. To mitigate the problem of network latency, recently offload-
ing to computing resources lying within the user’s premises, such as
network routers, tablets or laptop has been proposed. In this paper,
we determine the devices whose processors have sufficient power to
act as servers for computation offloading. We perform trace-driven
simulation of SPECjvm2008 benchmarks to study the performance
using different hardware. Our simulation shows that offloading to
current state-of-the-art processors of user devices can improve per-
formance of mobile applications. We find that offloading to user’s
own laptop reduces finish time of benchmark applications by 10%,
compared to offloading to a commercial cloud server.
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1. INTRODUCTION
Computation offloading is a method of utilizing a server system to
augment the battery life and processing power of mobile devices
like smartphones. In computation offloading, a mobile application
is split into two components – one each for execution on mobile
device and server. Prototypes of such offloading frameworks have
shown improved battery life and faster application finish time of
smartphone applications [1, 2].

An interesting question in computation offloading is to decide which
machines to use as server. Most offloading framework prototypes
developed so far use an in-house desktop or server machine. Cur-
rently, offloading frameworks have two distinct choices of machines
that can be used as server. The first choice involves offloading to
commercially available cloud servers and is known as mobile cloud
computing. Prototype implementations of offloading utilize this
technique. The second choice, known as mobile edge computing,
involves offloading to other user edge devices such as tablets, lap-

Figure 1: Working of a computation offloading framework. The
offloading framework may use either low-powered user edge de-
vices, such as routers, laptops and tablets, or commercially avail-
able cloud servers. These two cases are known as mobile edge and
mobile cloud computing respectively.

tops or network routers.

Cloud servers and user edge devices have two major differences:

• Processors of cloud servers have faster processors. For ex-
ample, running the benchmark CoreMark [3] shows that a
Google Cloud Platform [4] processor is around 6 times faster
than a mobile device.

• Latency of cloud servers is higher than edge devices. By per-
forming a series of ping probes from our mobile device over
Wi-Fi, we found that Google Cloud Platform has an average
latency of 87 ms, compared to just 14 ms for a device within
the same network.

One of the most important factors of user satisfaction is lower ap-
plication finish time [5]. An offloading framework partitions the
mobile application in a way that reduces its finish time. While exe-
cution on a cloud is much faster than on a mobile device, migrating
data over the network between the mobile device and the server
consumes additional time. Thus, a partitioning algorithm has to
balance the trade-off between more execution of tasks on the server
and ensuring less time spent on migrating data. The speed of the
server and the network latency, therefore, has a major impact on the
way the offloading framework partitions the application.

Fig. 2 shows how the partition generated for a simple program
changes due to the type of server used. The application consists
of three methods – met(), gps() and net() respectively. The method



Latency Processor Power
Edge Device 10 ms 2 times
Cloud Server 50 ms 10 times

(a) Parameters used for the example. Latency
refers to the latency of server from mobile de-
vice. Processor power refers to speed of proces-
sor compared to mobile device.

(b) (c) (d)
Figure 2: An example of how server device affects application par-
titioning. Parameters used for this example are shown in Fig. 2a.
Fig. 2b shows execution of the application entirely on mobile de-
vice. Fig. 2c and Fig. 2d show execution by offloading to an edge
device and cloud server respectively.

gps() depends on the GPS, and thus must be executed on the mo-
bile device. When the application is executed entirely on the mo-
bile device, execution of the application takes 350 ms. When the
offloading framework can offload to an edge device, both the meth-
ods met() and net() are offloaded. This takes a total of 240 ms.
However, when it has access to a cloud server, the higher latency
ensures that executing met() on the mobile device is faster. Thus,
only net() is offloaded. Using a cloud server, therefore, gives an
application finish time of 270 ms. In this way, the application par-
tition changes depending on the type of server used.

A key question here is if offloading to user edge devices can pro-
vide faster application finish time compared to commercial cloud
servers. Edge devices have weaker processors than cloud servers,
but also have lower latency. Whether the lower latency of edge de-
vices can compensate for the weaker processors compared to cloud
servers needs to be investigated. Such an investigation needs to
study the performance of offloading using different cloud servers
under realistic workloads.

In this work, we compare the performance of offloading using cloud
server and to user edge devices. We study the impact of using dif-
ferent servers on application finish time and application partition.
We first develop a system model that can be used to study both
cases of offloading. We collect traces of SPECjvm2008 [6] pro-
grams using aspect-oriented programming. Aspect-oriented pro-
gramming allows us to modify the bytecode of an existing appli-
cation at run-time to log details of methods executed. We then
perform trace-driven simulation to determine the application fin-
ish time using cloud server and edge devices of SPECjvm2008
benchmark programs. We find from our trace-driven simulation
that edge devices for general-purpose computing, such as laptops,
can perform better than cloud servers. Smaller edge devices, like
tablets and routers, can also reduce application finish time, but
gives slower performance than cloud servers. Our work, therefore,
shows that offloading to edge devices is an attractive option for
smartphone users.

The rest of this paper is organized as follows. Section 2 describes
related work. We develop our formal model of offloading in Sec-

tion 3. Section 4 describes our techniques to generate traces of the
workload and measure the parameters required for simulation. We
discuss our simulation results in Section 5, and some of the limita-
tions of our approach in Section 6. We conclude in Section 7.

2. RELATED WORK
In this section, we first start with discussion of related offloading
frameworks. We then explain studies that target managing latency
of cloud servers. Finally, we discuss related works on offloading to
edge devices.

The first computation offloading frameworks from mobile devices,
MAUI [1], CloneCloud [2] and Odessa [7], used a single desktop
or server machine as remote server. These systems usually used a
software-based middleware to vary the network latency to simulate
the latency of cloud servers. Other offloading frameworks, such as
ThinkAir used a custom-made server with many different virtual
machine (VM) configurations [8]. Barbera et al. [9] performed a
trace-based study of energy gains using a commercial cloud ser-
vice Amazon EC2. Another study used PlanetLab servers to study
the effect of latency on interactive smartphone applications such
as games [10]. These studies first identified high latency of cloud
servers as a major problem in computation offloading.

A second category of studies on offloading suggested installation
of computing resources with ready access to energy in the vicin-
ity of mobile devices [11]. Such computing resources are called
cloudlets. Since cloudlets are closer to mobile devices, they have
much lower latency. However, utilizing cloudlets require installa-
tion of additional computing infrastructure. This has slowed their
adoption.

Another group of studies aim to reduce the latency of existing cloud
data centers. For example, QJUMP suggests using separate queues
for latency-sensitive applications that utilize the cloud server [12].
Silo provides guarantees of network latency by utilizing network
calculus [13]. Finally, a recent proposal suggests inferring the la-
tency requirements of an application by studying its request pat-
terns [14],

Finally, a few recent studies have suggested utilization of edge de-
vices in the context of Internet of Things (IoT). This is known as
fog computing [15]. For example, mobile fog suggested utilizing of
distributed network devices such as routers closer to the mobile de-
vices [16]. Garcia Lopez et al. [17] proposed a more general type
of offloading, where application is offloaded to different user de-
vices. This is known as mobile edge computing. Our study builds
on these works by studying the feasibility of utilizing edge devices
using trace-driven simulation.

3. TASK PARTITIONING MODEL
In this section, we first explain the way computation offloading
works. We then utilize this technique to develop its formal mathe-
matical model.

3.1 Preliminaries
A computation offloading system consists of several processors pk
both in the mobile device and server. We represent the set of pro-
cessors as P = {p1, p2, ..., pm}. A subset of these processors
M ⊂ P belong to the mobile device.

A mobile application is represented using a Directed Acyclic Graph
(DAG) G = (V,E). A vertex vj in the vertex set V represents a



Figure 3: An example of a call graph representing a mobile ap-
plication. Methods shaded gray must be executed on the mobile
device.

V Task set of application
E Dependency set of application
U Set of tasks that must be executed on mobile device
M Set of processors in mobile device
P Set of processors in mobile device and server system
vj A method in the call graph
pk A processor in the system (mobile device or servers)
tkj Execution time of a task vj on processor pk
m Number of processors in the system
n Number of tasks in the mobile application

(vi, vj) Data dependency from task vi to vj
rhk
ij Migration time of dependency (vi, vj) from ph to pk
xk
j Decision variable denoting if vj is executed on processor pk
Tj Finish time of the task vj
Sj Start time of the task vj
Rij Migration time of the edge (vi, vj)
σij Decision variable denoting if vi is executed before vj

Table 1: Symbols and variables introduced in Section 3

method or a task in the application. On a processor pk a task vj
takes tkj time to execute. The value of tkj depends on the task vj
and the power of the processor pk. An application begins and ends
on the mobile device. Moreover, the execution of a set of tasks
U may be tied to some hardware such as camera or GPS present
only on the mobile device. Dependency from a task vi to vj is
represented as an edge (vi, vj). The set of dependencies is the edge
set E of the DAG. For each dependency (vi, vj), execution of task
vj can begin only when vi finishes. Moreover, if vi and vj execute
on different machines, then program states must be migrated. Let
rhkij denote the time to migrate data from processor ph to pk for
(vi, vj). The value of rhkij depend on the location of the processors
ph and pk as well as on the amount of data that needs to be migrated
for (vi, vj). We assume that execution time tkj and migration time
rhkij are known a priori by profiling the application. We note that
prior profiling to get execution and migration time is common in
offloading systems.

3.2 Mathematical Model
The offloading framework needs to decide the processor pk on
which each task vj executes. To denote this, let xkj be a binary
decision variable such that:

xkj =

{
1 if task vj is executed on processor pk
0 if task vj is not executed on processor pk

Let the start time and execution duration of a task vj be Sj and lj
respectively. Also, let the completion time of vj be Tj . Our aim is
to reduce the finish time of mobile application. This is equal to the
finish time of the last task vn of the application. Thus, our objective
is to minimize the finish time Tn of the last task vn:

Min Tn (1)

The finish time Tj of a task vj is equal to the sum of its start time
Sj and its execution time tkj on the processor pk. Mathematically,

∀vj ∈ V, Tj = Sj +

m∑
j=1

xkj t
k
j (2)

A task vj can start executing only if its predecessor tasks vi be-
come available. A predecessor task vi becomes available, when vi
finishes execution and its data is migrated to the processor where
vj is executed. Thus, starting time Sj of vj is not less than the sum
of finish time Ti of vi and migration time Rij .

∀(vi, vj) ∈ E, Sj ≥ Ti +Rij (3)

The migration time Rij of an edge (vi, vj) is the time needed to
fetch output of vi to execute vj . If an edge (vi, vj) is migrated
from processor ph to pk, this has a cost of rhkij . Here we assume
that if ph and pk are same processors, then rhkij = 0. We represent
the migration cost mathematically as:

∀(vi, vj) ∈ E, Rij =
∑

(vi,vj)∈E

m∑
h=1

m∑
k=1

xhijx
k
ijr

hk
ij (4)

The constraints that we have defined so far do not limit the amount
of parallelism. However, the number of processors available is lim-
ited. Thus, the offloading framework also needs to decide the se-
quence of execution of tasks. To denote this, let σij be a binary
variable for all pair of tasks ti and tj such that:

σij =

{
1 if vi finishes execution before vj begins execution
0 otherwise

Thus, we can now rewrite Equation 3 as:

∀vi, vj ∈ V, Sj ≥ σij(Ti +Rij) (5)

For all edges (vi, vj) in the graph, the task vj has to be executed
only after vi has completed. This precedence constraint is repre-
sented using the variable σij .

∀(vi, vj) ∈ E, σij = 1 (6)

Moreover, for any pair of tasks vi or vj , either vi must be executed
before vj or vice-versa. Mathematically, we represent this as:

∀vi, vj ∈ V, σij + σji ≤ 1 (7)

If the tasks vi and vj are scheduled by the offloading framework
concurrently, i.e. σij = σji = 0, then they must execute on dif-
ferent processors. Thus, in this case, only one of the values among
xki and xkj can be equal to 1. Mathematically, we represent this
constraint as:

∀vi, vj ∈ V, ∀k = 1...m, xki + xkj ≤ 1 + σij + σji (8)

Finally, the tasks vj ∈ U can only be executed on the mobile de-
vice. In other words, they can be executed on any one of the pro-
cessors pk ∈ M. Mathematically, we represent this as:

∀vj ∈ U,
∑
pk∈M

xkj = 1 (9)



All other tasks vj ∈ V−U, must be executed on any one processor
from any device, i.e.

∀vj ∈ V− U,
∑
pk∈P

xkj = 1 (10)

Equations 1 to 10 provide a formulation of an offloading system
with multiple processors on different devices. An optimization
solver on solving this simulation system gives the values of xki to
denote the processors on which each task is executed, and σij to
denote the execution sequence of each task. We now utilize this
formal model to develop our simulation system.

4. METHODOLOGY
In this section, we first describe our method of collecting traces of
applications. We then explain our technique of measuring different
parameters required for simulation.

4.1 Generation of Call Graph
We use aspect-oriented programming to generate an annotated call
graph. Aspect-oriented programming (AOP) is a technique of adding
additional code to an existing program, without directly modifying
its source code. The additional code is called aspect. AOP can even
work in cases where source code is not available by modifying in-
termediate code of the application.

We utilize AspectJ, which is a common framework for aspect-oriented
programming in Java [18]. AspectJ can add additional code at run-
time to modify the behavior of an existing program. We treat the
entry and exit points of each method as possible migration points.
For our purpose, we log details of each method at their possible
migration points.

To form a call graph from a program that is useful for our purpose,
we collect the following data for each method:

• Method name, including its formal parameters and return
types

• Thread identifier

• Execution time

• Amount of data that needs to be migrated

We obtain the method name by accessing the stack trace of the cur-
rent thread. Similarly, Java provides a method within Thread class
to access the thread identifier of the current thread. To obtain the
execution time, we utilize Java’s ThreadMXBean1 interface. Fi-
nally, to obtain the amount of data, we serialize the objects of each
argument and return types, write it to a memory buffer and then
calculate its length. We then use a java agent at run-time to ob-
tain these data from the benchmark programs. We use the time
command on the benchmark programs to find out the overhead of
utilizing aspect-oriented programming. Our measurements showed
an overhead of less than 10% on the execution time of benchmark
programs.

1http://docs.oracle.com/javase/7/docs/api

4.2 Estimation of Simulation Parameters
A realistic estimate of performance using both cloud and edge de-
vices requires measurement of their processor performance and
network latency. To compare the performance of processors with
different instruction set architectures, we use CoreMark benchmarks
[3]. CoreMark is a set of common benchmark programs, contain-
ing matrix multiplication, linked-list manipulation and Cyclic Re-
dundancy Check. One of its major advantages is that it is widely
available for execution on different platforms, including desktops,
servers and mobile devices. It is a widely used technique of com-
paring processor performance across platforms. The values ob-
tained using these benchmarks is taken as a representative of the
overall processor performance. Table 2 shows a list of platforms on
which we perform our experiments.

We measure the network latency of user devices and cloud servers
by using ping probes. We use the ping utility to send 100 ping
probes and then take their average latency values. This is a standard
technique widely used in measuring the latency values. Our experi-
ments showed an average latency of 14 ms for user-controlled edge
devices and 87 ms for our cloud server.

5. TRACE-DRIVEN SIMULATION
We selected a set of SPECJVM08 benchmarks that are relevant
to mobile devices. The benchmarks we selected include common
workload such as encryption, data compression, Fast Fourier Trans-
form and audio decoder. We generate the traces of these benchmark
programs using the technique described in Section 3. We then im-
plemented the mathematical model described in Section 3 as an
Integer Linear Programming (ILP) problem in Matlab.

Fig. 4 shows the application finish time of benchmark applications
using both edge devices and cloud server. We note that all server
systems (edge and cloud) improve application finish time. More-
over, the best performance for each benchmark is obtained using
a laptop, followed by cloud server, tablet and router respectively.
A cloud server reduces the average application finish time by 46%
over local execution, compared to 52% for laptop, 43% for tablet
and 41% for router.

Our trace-driven simulation, therefore, shows that user-edge de-
vices can perform better than a cloud server if they have sufficiently
powerful processors. The slower processors of user-edge devices is
compensated by the lower latency to access these devices. Even
a smaller edge-device like router improves the performance of the
benchmark applications significantly.

To further study the effect of processor performance and network
latency, we vary the latency and processor power of the server in
our simulation. We then study the average application time across
the ten benchmark programs.

Fig. 5 shows the impact of processor speed and network latency on
application finish time. We note that at a latency of around 90ms,
improving the processor speed does not have much impact on the
finish time. At lower latencies, the impact of more powerful pro-
cessors is much greater. In each case, we observe that the gains of
increasing the processor speed diminish after reaching a value of
around 8000 Coremarks.

2The coremark value of this device is an estimate based on the
values of similar processors.



Device Model Processor CoreMark value per core
Smartphone Samsung Galaxy S3 [19] Quad-core 1.4 GHz Cortex-A9 1786
Tablet Samsung Google Nexus 10 [20] Dual-core 1.7 GHz Cortex-A15 3850
Router ASUS onHub [21] Qualcomm IPQ8064 3500 2

Laptop Sony VAIO Notebook[22] AMD Dual-Core Processor E-350 (1.6 GHz) 4960
Cloud Google Cloud Platform[4] n1-standard-8 10906

Table 2: A list of Coremark values per core in different hardware devices. Coremark values per core are taken as representative of the
processing speed of a single core.
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Figure 4: A comparison of finish time of different benchmark applications by offloading to cloud server, laptop, tablet, router and without
utilizing offloading.
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Figure 5: Impact of processor speed and latency on application fin-
ish time. Processor speed is measured using the CoreMark bench-
mark value.

These observations show that the most significant factor limiting
performance of mobile cloud systems is high network latency. Since
cloud systems are accessed over the Internet, the cloud server provider
has only a limited role in reducing latency. On the other hand, user-
controlled edge devices, despite having slower processors, have
much lower latency. Moreover, due to improvement in proces-
sor technology, the processor speeds of such devices is continu-
ously improving. Thus, offloading to user-controlled edge devices
is likely to become more attractive for smartphone users in the near
future.

6. DISCUSSION
Our trace-driven simulation makes two assumptions. We do not
discuss the consider the execution of other processes on edge de-
vices. Execution of other processes lead to time-sharing of proces-
sors and increase the response time of smartphone requests. How-
ever, our simulation results show that even slower edge devices sig-
nificantly reduce application finish time. Secondly, we use Core-
Mark benchmark as a measure of the processor performance. Al-
though CoreMark is a widely used processor benchmark, a proper
study of processor speed requires running a variety of workloads.

Our trace-driven simulation experiments assume that the processor
performance remains approximately similar for different applica-
tions.

7. CONCLUSION
In this paper, we compare the performance of offloading from smart-
phone to a cloud server and user-controlled edge devices such as
laptops, tablets and routers. We first formulate a mathematical
model to represent the offloading problem. We then utilize aspect-
oriented programming to obtain traces of benchmark Java programs.
We perform trace-driven simulation to determine whether offload-
ing to edge devices can reduce application execution time. Our
simulation shows that offloading to larger edge devices such as lap-
tops can provide better performance than a cloud server. Smaller
edge devices such as tablets or routers provides slower performance
than a cloud server, but can also significantly speed up application
execution. Thus, offloading to such devices is a promising tech-
nique of augmenting the processor resources of smartphones.

As future work, we would like to study the impact of offloading to
user-controlled edge devices on energy consumption. Smartphones
can utilize bluetooth to connect to user devices, which consumes
much lower energy. We would like to explore the impact of utiliz-
ing bluetooth for offloading smartphone applications.
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