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Abstract—A growing number of sensors on smart mobile
devices has led to rapid development of various mobile appli-
cations using location-based or context-aware services. Typically,
outdoor localization techniques have relied on GPS or on cellular
infrastructure support. While GPS gives high positioning accu-
racy, it can quickly deplete the battery on the device. On the
other hand, base station based localization has low accuracy. In
search of alternative techniques for outdoor localization, several
approaches have explored the use of data gathered from other
available sensors, like accelerometer, microphone, compass, and
even daily patterns of usage, to identify unique signatures that
can locate a device. Signatures, or fingerprints of an area, are
hidden cues existing around a user’s environment. However, under
different operating scenarios, fingerprint-based localization tech-
niques have variable performance in terms of accuracy, latency of
detection, battery usage. The main contribution of this survey is
to present a classification of existing fingerprint-based localization
approaches which intelligently sense and match different clues
from the environment for location identification. We describe how
each fingerprinting technique works, followed by a review of the
merits and demerits of the systems built based on these techniques.
We conclude by identifying several improvements and application
domain for fingerprinting based localization.

Index Terms—Outdoor positioning, content based image re-
trieval, signal based positioning, smartphone sensing, database
search, pattern matching, energy efficiency.

I. INTRODUCTION

SMARTPHONE-BASED outdoor localization has been
gaining attention as increasing number of in-built sensors

make it easier to locate a smartphone and its user. It is common
for most location-based applications, like Poido and MapQuest
Map, to use GPS on a smartphone. Although GPS is the
preferred mode of outdoor localization, GPS-based techniques
often do not perform well in crowded cities or in unfavorable
weather, like overcast conditions. When the satellite signals are
delayed due to multi-path or blocked by obstacles, GPS-based
localization service can suffer. In addition, it is well-known that
GPS is extremely power hungry.
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The presence of multiple sensors on smartphones has
opened up new avenues for outdoor localization. Smartphones
equipped with cameras and low-power sensors have enabled us
to not only gather information about our surroundings, but also
can detect movements to track our daily activities. The clues
about our environment, or location, collected from the sensor
inputs or the user activity patterns lead to an alternative way
of locating a device and its user. The clues act as signatures
that can be matched against pre-defined geotagged signatures.
We term this fingerprint-based localization, and focus on its
application for outdoor localization.

Compared to GPS and other standard positioning techniques,
these fingerprint-based localization techniques have many ad-
vantages. First, the low-power sensors integrated in current
smartphones draw much lower power, even when active con-
tinuously. Second, depending on the application requirement,
one may wish to trade-off accuracy for energy efficiency.
Fingerprint-based localization can enable such trade-off more
effectively. Finally, no additional hardware or infrastructure
modifications are needed in most of the fingerprint-based lo-
calization techniques.

Since different fingerprint-based localization techniques vary
considerably in performance and operating environments, a
summary of the techniques helps the user in selecting a suitable
solution based on the various trade-offs. To this end, we present
a survey that considers different fingerprint-based techniques
for outdoor localization. To the best of our knowledge, this
is the first study which captures usage of different sensors
for outdoor localization, unlike earlier surveys on network-
based mobile positioning techniques [1] or indoor localization
techniques [2], [3].

The main contribution of this survey is to review fingerprint-
based localization techniques and existing systems in the do-
main. We classify the current techniques and the systems
with respect to different fingerprinting approaches. To un-
derstand the trade-offs of each approach, we present the ad-
vantages and disadvantages of each technique. Finally, we
highlight the issues in existing solutions and new research
directions to augment fingerprint-based outdoor localization
systems.

The rest of this survey is organized as follows. In Section II,
we present an overview of the concepts relevant to fingerprint-
based localization techniques. We focus on visual fingerprint,
motion fingerprint, signal fingerprint, and hybrid fingerprint
which are the most commonly used fingerprinting modalities in
literature. In Section III, we classify current fingerprint-based
localization techniques according to fingerprint types, followed
by a review of the existing fingerprint-based localization sys-
tems in Section IV. Section V presents a comparison of the sys-
tems along three performance objectives. Section VI presents
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future directions in the use of fingerprint-based localization
techniques. Finally, we conclude the survey in Section VII.

II. OVERVIEW OF FINGERPRINT-BASED LOCALIZATION

In this section, we first explain the concept of fingerprint-
based localization and illustrate its usage using examples. Next,
we present the types of fingerprints which are commonly used.
Finally, we present the functional design used typically in all
the techniques.

A. Fingerprint-Based Localization

Fingerprint-based localization captures signatures that are
matched against a set of geotagged signatures to identify a
device location. Signatures can be recorded using different in-
built sensors in a mobile device, or the sensors can be used
intelligently to detect users’ activity pattern. For example, one
can use the camera to take a picture of a landmark and match
the picture against geotagged images to identify the location.
Microphones can be used to detect the sound signature of dif-
ferent places. Even the user’s daily movement pattern, namely
the detection of specific WiFi access points, can indicate that
the user is in office or at home. More complex cues are hidden
in our environment. The goal of fingerprint-based localization
is to discover these hidden cues and use them effectively to
determine the location of a device, and a user where the user
is carrying a device, like a smartphone.

B. Fingerprint Types

Due to the increasing number of sensors on smartphones,
many types of information present around us can be sensed.
This enables new opportunities for utilizing the context in-
formation as signatures for smartphone localization. Recently,
various fingerprint-based localization techniques have been
proposed. Three main fingerprint types used in the literature are
visual fingerprint, motion fingerprint, and signal fingerprint.
Finally, by combining multiple cues from different sensors it
is possible to generate hybrid fingerprints.

1) Visual Fingerprint: Powerful image- and video-processing
techniques equipped in modern mobile devices (smartphones or
tablets) have enabled intensive research in visual-search tech-
niques in the last decade. Many content-based image retrieval
techniques have been proposed to search a query image from a
large image database using visual features appearing in images
such as color, texture, shape [4]. Along with these techniques,
many mobile image-based retrieval applications have been
introduced such as Google Goggles [5] and Vuforia Object
Scanner [6]. Google Goggles is an image search application
which can identify products, paintings, landmarks appearing
in mobile images to provide users with useful information.
Vuforia Object Scanner is an Android application that provides
real-time visual feedback on the target quality, coverage, and
tracking performance of the scanned objects.

Nowadays, images taken by a mobile device can be used
to pinpoint the location of mobile devices. Due to the prolif-
eration of geotagged images, many visual-based localization
systems have been proposed using smartphone cameras [7], [8].

Fig. 1. Visual fingerprint-based localization uses an image captured by the user
to match against geotagged images in a database to identify the location.

A typical system can be seen as shown in Fig. 1, where the
user clicks an image with her smartphone camera and uses
the captured image as a query input to find similar images
from a database of geotagged images. The best-matched image
is returned with the geo-location information as the location
where the query image was shot.

2) Motion Fingerprint: With the support of motion sen-
sors such as accelerometers and electronic compasses or gy-
roscopes, today’s smartphones can perform sensing and user
motion recognition in real-time. Recent studies show that the
motion data can be used not only as a signature to locate
the position of a mobile user, but also as additional inputs
to improve the localization performance in other standard
positioning techniques.

The basic idea is to combine the accelerometer and compass
readings and match them with a map of the area of interest
to estimate the location of mobile devices. Readings from the
accelerometer are used to detect the traveled distance, while
readings from the compass are used to estimate the orientation
of the mobile devices. The traveled distance and the orientation
of the mobile devices are measured periodically, and used as
fingerprints and for localization.

3) Signal Fingerprint: The proliferation of mobile devices
and wireless networks has encouraged a growing interest in
location-aware systems and services. Several types of tech-
niques that detect wireless signal for localization have been
proposed such as signal fingerprinting, time of arrival (ToA),
angle of arrival (AoA), time difference of arrival (TDoA) [9].
Among them, signal fingerprint-based localization techniques
show higher accuracy in presence of complex radio wave
propagations, compared to other techniques which often suffer
from the effect of multipath signals in indoor environments. The
basic idea of this technique is to find the location of a mobile
device by comparing its signal pattern received from multiple
transmitters (e.g., WiFi APs or BSs) with a pre-defined database
of signal patterns. There are a variety of signal fingerprint-based
localization systems in the literature [2]. RADAR system is one
typical example of this technique, which employs WiFi signals
for indoor localization [10]. The WiFi fingerprint is constructed
using the RSSIs received from WiFi APs, which are visible to
the WiFi antenna in laptops. However, it was developed to track
indoor locations.

As the availability of WiFi access points (APs) and base
stations (BSs) have become more pervasive in many urban
areas, signal fingerprint-based localization techniques have
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Fig. 2. Signal fingerprinting works by collecting the RSSI values from multiple
WiFi access points or base stations to generate a unique signature of an area.

been proposed for outdoor environments. In general, the signal
pattern is generated by observing the Received Signal Strength
Indicator (RSSI) values at a mobile device. The fingerprint is
a tuple comprising of RSSI value, and the AP or BS identifier
[11]. It can also be a sequence of cell-IDs as proposed in [12],
or combinations of RSSI values with other information such
as MAC address of the APs or signal-to-noise ratio (SNR)
[13]. Fig. 2 depicts the use of signal fingerprint for outdoor
localization.

Besides these conventional signal fingerprint-based localiza-
tion techniques, an alternative approach has been introduced
using the signal subspaces obtained by array antennas [14].
The basic idea is that the signal subspaces, which consist of
information about the signal strengths and angle of arrival of
impinging signals on the array antenna, can be used as the
fingerprint to estimate the location of the mobile device.

4) Hybrid Fingerprint: There is a tradeoff between accuracy
and power consumption in most of the techniques. However,
combining multiple fingerprint types can lead to more robust
hybrid fingerprint-based localization systems with better per-
formance. For instance, to minimize the impact of inherent
noise from motion sensors, SmartLoc has proposed the use of
landmarks (e.g., bridges, traffic lights) or the driving speed of
mobile users as signatures to calibrate the localization result
[15]. This can maintain high accuracy when GPS signals are
temporarily disrupted.

Incorporating the use of fingerprinting approaches along with
standard positioning techniques can also improve performance.
For instance, motion fingerprint has been used in association
with GPS module as auxiliary signatures to increase energy
efficiency [16], [17]. The motion data are analyzed to recognize
the user’s current activity state, such as stationary or mobile.
This gives the hint to switch on or off location sensors, which
can reduce power consumption. When a user is stationary,
the activity detected using accelerometer readings can prevent
activating GPS, thus saving energy spent.

C. Functional Design of Fingerprint-Based Localization

A fingerprint-based localization system typically comprises
of two key modules; fingerprint sensing module and fingerprint
matching module. We present a description of the functional

Fig. 3. Functional design of fingerprint-based localization systems showing
the sequence of activities for fingerprint generation and matching, as well as
populating the fingerprint database with geotagged signatures.

blocks of a typical fingerprint-based localization system. Fig. 3
shows the sequence of steps in the workflow.

1) Fingerprint Sensing: Fingerprint sensing is the first step
in any fingerprint-based localization. When a fingerprint-based
system starts, the necessary sensors are activated to record the
data continuously or periodically.

In many image-based localization applications, for instance,
the smartphone camera is activated to enable the user to take
a picture used as the input to the location query. On the
other hand, motion fingerprint-based localization techniques
activate the motion sensors, accelerometer and gyroscope for
continuous recording.

2) Fingerprint Cleansing: The raw data received from sen-
sors often contain noise. Utilizing these raw data directly for lo-
calization process would degrade the performance of the whole
system in terms of accuracy, energy efficiency, and latency. To
avoid this problem, a filtering process is required to clean the
data before forwarding it to the next step.

In image-based localization techniques, transmitting the en-
tire image over the network or performing image processing
steps for the entire image takes more time and may consume
more energy than just performing the steps over the relevant
parts of the image. Therefore, to minimize the energy cost of
the whole system, it is necessary to select only the relevant parts
of an image for the localization process.

3) Fingerprint Generation: The fingerprint generation step
organizes the inputs from different sensors into a structure that
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can be easily parsed during the matching step. After eliminating
noise, fingerprint-based localization approaches construct a
fingerprint query which is sent to the matching process. Data
captured by the sensors are usually disordered or sometimes
it is formless compared to the pre-recorded fingerprints in the
database.

Different types of fingerprints have different ways to con-
struct signatures. For example, the order of RSSIs from respec-
tive APs or BSs is important in constructing a fingerprint. Thus,
the raw signal received at the smartphone must be processed
to obtain the RSSIs fingerprints in the form that matches the
structure of the stored signatures.

4) Fingerprint Matching: Although different types of finger-
prints require different matching techniques, they all consider
the size of the search space in order to increase the matching
performance in terms of power consumption and processing
time. As the size of the reference fingerprints in database
increases, the matching performance notably decreases. There-
fore, limiting the search space to a confined area is the prior
knowledge integrated in most fingerprint matching processes.

Various techniques have been employed to direct the match-
ing process to only fingerprints which exist within the area of
interest. Most of them employ approximate coarse localization
techniques available on most mobile devices, such as using
Cell-ID of the network provider to restrict the search space to
only the region inside the cell [7], [8].

After limiting the search space, a pattern matching algorithm
is used to figure out the location of the mobile device by
comparing the query fingerprint to the pre-recorded fingerprints
in the database. The pattern matching process returns the closest
match with a location coordinate.

5) Populating the Fingerprint Database: Fingerprint-based
localization systems require a database of fingerprints with geo-
tags that must be constructed a priori. It requires a war-driving
to collect the signatures from different areas. Alternatively,
crowdsourcing geotagged information, like images posted with
geotags, can be used to populate the database [18].

III. CHARACTERIZATION OF FINGERPRINT

TYPES FOR OUTDOOR LOCALIZATION

There are various fingerprint-based outdoor localization
techniques proposed in the literature. Depending on the finger-
print type, each technique varies in implementation details, as
well as, localization performance in terms of accuracy, energy
efficiency, and latency. Fig. 4 shows a classification of different
fingerprint types used in literature, as well as the perfor-
mance objectives for the systems. Although all the fingerprint-
based localization schemes follow a similar workflow, as shown
in Fig. 3, note that the details and the complexity of each
function block varies considerably. This section presents the
generic approach for each fingerprinting modality. Finally, dif-
ferent techniques used in each function block are summarized
in Table I.

A. Visual Fingerprint-Based Localization

The basic idea of visual Fingerprint-Based localization is to
analyze the contents of an image and extract visual features

Fig. 4. Different modes and performance objectives for outdoor fingerprint-
based localization.

which can be used to construct a fingerprint for searching
similar images from a database of geotagged images. This im-
age search technique, known as content-based image retrieval
(CBIR), has been an area of extensive research in computer
vision for the past few decades [4], [19].

The main challenge of CBIR technique is the accuracy rate
and speed of searching for digital images in large databases. By
representing an image using bag-of-words (BoW) model with
the aid of the k-means algorithm, each image can be treated as a
document. One constructs a codebook by clustering each visual
feature of training images into different visual words, and then
represents each image by a histogram of the visual words for
classification [20]–[22].

Fig. 5 shows a functional design for visual fingerprint-based
localization. The techniques used in each function block are
presented next.

1) Visual Fingerprint Generation: As a first step, visual
features extracted from the taken image are analyzed to gen-
erate a visual fingerprint for recognizing the landscape (or a
prominent building) in the image. In general, visual features can
be categorized into global and local features. Global features
refer to image’s overall properties such as color, edge, and
texture. Local features aim to represent the image content which
describes points of interest extracted from salient regions or
patches within the image. Most landmark recognition systems
use global features in conjunction with local features to improve
the performance of the recognizing process.

The points of interest (PoI) are captured using feature de-
scriptors, which are useful for comparing variations in objects
across images. A feature descriptor is a high-dimensional fea-
ture vector of each region in an image, and uniquely character-
izes PoI of the image. With respect to illumination conditions,
scale changes, and affine transformation, Scale-Invariant Fea-
ture Transform (SIFT) [23] has been introduced as a well-
known algorithm, which detects PoI in a scale-invariant way.
Several variants of the SIFT algorithm have appeared in the
last decade, trying to improve the PoI extraction or the feature
descriptor [24]–[26]. For instance, the Speeded-Up Robust
Features (SURF) algorithm [25] improves the PoI extraction.
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TABLE I
SUMMARY OF TECHNIQUES APPLIED IN DIFFERENT FUNCTIONS FOR FINGERPRINT-BASED LOCALIZATION

Fig. 5. Functional design for visual fingerprint-based localization.

For those trying to improve the feature descriptor, the Gradient
Location and Orientation Histogram (GLOH) [26] has been
considered as a robust image descriptor.

By quantizing the high-dimensional feature descriptors into
the so-called visual words using the k-means algorithm, an
image can be represented by a visual word frequency histogram
(or BoW vector) [27], which can be used as fingerprints for
large scale image search. In other words, images are translated
into textual documents, also known as inverted files, which are
then indexed and retrieved in the same way as the text-based
search. Various extensions have been proposed to improve the
performance of the quantization [28]–[30].

2) Visual Fingerprint Matching Technique: Using k-means
clustering algorithm, the image retrieval problem is reformu-
lated into a text retrieval one. The similarity between the
query image and each reference image in the database can be
computed efficiently using inverted files. However, the size of
the inverted files scales linearly with the number of reference
images. The visual fingerprint matching technique suffers from
high power consumption and high latency, as the size of the
inverted files increases. This happens due to the fact that the
CBIR technique has to match the query image against the entire
large database of geotagged images.

Similar to other fingerprint-based localization systems, the
CBIR-based techniques first limit the search space to only im-
ages which have geo-tags within the neighbor area of the mobile
device using an anchor. This anchor can be computed using
coarse localization techniques available on most mobile de-
vices, such as via cell tower triangulation or the location of the
current cell that the mobile device is connected to [31]. Using
this anchor, various techniques have been proposed to search
for the neighbor area. Divide and conquer algorithm-based ap-
proaches segment the search area into several overlapping sub-
regions and use the anchor to search for the approximate coarse
area [7], [8].

After reducing the size of the search space, a visual finger-
print matching technique is used to find the spatially closest
image from a database of geotagged images. Most CBIR-based
matching techniques employ the Nearest-Neighbor Search
(NNS) algorithm, which computes the distance between two
images, to calculate the similarity of two images. Using the
PoIs and feature descriptors of the query image, NNS technique
selects candidate images in the search space and groups them
into different sets of features. One candidate image can appear
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in more than one result set. Finally, the candidate images are
merged together, and sorted by the number of occurrences in
the respective result sets [31]. For example, if an image has very
similar color and edge features in comparison to the reference
description, then the same image will probably occur in both
result sets: color and edge set. During this merging process,
images are ranked based on the number of times they occur
in different result sets.

3) Visual Fingerprint Populating Technique: Geo-tagging
has become a popular function in cameras recently. A pic-
ture can be tagged with the geolocation information while it
is clicked using GPS. Since many landmarks and prominent
locations already have their geotagged images on the Internet,
comparing an image captured by a mobile device with these
geotagged images can help identify the location of the mobile
device.

There are a large number of geotagged images accessible from
the Internet such as Flickr, Pinterest, Instagram, Photobucket,
or Picasa. Many visual fingerprint populating techniques have
been proposed to collect geotagged images from these image-
sharing websites for constructing visual databases. For instance,
Chen et al. [32] released a large set of street-level images orga-
nized together with hundreds of geotagged query images. Other
localization systems also use 360◦ panoramic images with
geotags, which can be accessible from many web mapping
services like Google Street View from Google or Bing Maps
from Microsoft, to construct visual fingerprint databases [7].

B. Motion Fingerprint-Based Localization

Motion fingerprint-based localization is a positioning tech-
nique that detects a mobile user’s location using movement data
of that user. The movement data is collected from motion sen-
sors in mobile devices, such as accelerometer and gyroscope.
In general, a motion fingerprint-based localization consists of
two main processes: movement tracing and map matching, as
shown in Fig. 6. The movement tracing process is mostly done
by using Dead Reckoning (DR) algorithm, which traces the
moving speed and direction of a mobile user. DR algorithm
uses sensed data from motion sensors in mobile devices and
generates motion fingerprints periodically. The current location
is estimated using the previous location and the latest motion
fingerprint.

However, due to the fact that motion sensors can be noisy,
localization accuracy of the estimation is often low. Therefore,
a map matching process is often required to refine the user’s
location by adjusting the estimated location to the correct lo-
cation in a digital map. Alternatively, some motion fingerprint-
based systems are integrated with other fingerprints (e.g., visual
fingerprint and signal fingerprint) or other standard positioning
techniques, to calibrate the location.

1) Motion Fingerprint Generation: DR algorithm is used
for generating motion fingerprints. DR algorithm periodically
records the data from the accelerometer and gyroscope to
estimate the travel distance and the direction of movement of
a mobile user. Typically, there are two estimates required in
the DR algorithm: travel distance estimate and travel direction
estimate.

Fig. 6. Workflow describing motion fingerprint-based localization. A sync
signal is often used as a reference point that allows the phone to recalibrate
its location when the map matching process has deviated. This sync signal is
created using other standard positioning techniques, such as GPS or cellular
infrastructure supported localization.

Estimating Travel Distance: In general, a travel distance
can be calculated by taking the double integral of acceleration
data collected by the accelerometer readings. However, cheap
accelerometers in mobile devices are highly noisy. Therefore,
estimating travel distance for mobile devices using the integra-
tion of acceleration would require corrections, especially for
pedestrian tracking.

It is possible to use a person’s gait to estimate travel distance.
While walking, gait has a repeating pattern that provides a
uniform step length. Several ways to estimate travel distance
are proposed for pedestrians as follows:

• Distance Estimation Techniques: There are two ways to
estimate a travel distance: step-based distance estimation
and walking pattern-based distance estimation.

Step-Based Distance Estimation: Travelled distance
can be estimated by counting the number of walking
steps and then multiply it by the step length, as described
in the following simple formula.

d = ns.ls (1)

where d is the travel distance estimated, ns is the num-
ber of walking steps, and ls is the step length trained
beforehand. The challenge is to detect a step based
on accelerometer readings. This is done by using step
detection technique, which detects one’s walking step
pattern using motion data. To detect one step, continuous
readings received from accelerometer in one walking
step are analyzed and mapped to a pre-defined walking
step pattern [33].

Walking Pattern-Based Distance Estimation: Research
in [34] shows that the different placement of the phone
impacts the accuracy of each step counter due to the
nature of walking. For instance, having the phone in
hand correctly produces desired data, which contain 6
recurring patterns, while keeping the phone in the pocket
produces only 3 recurring patterns.

[34] also found that no matter how the phone is placed,
the acceleration data always shows some recurring
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patterns. For convenience, they refer to a pattern as
a period. By relaxing “human step” to “period”, they
propose a similar but more accurate formula to estimate
the travel distance as following:

d = np.lp (2)

where d is the travel distance, np is the number of periods,
and lp is the travel distance within one period trained by
experiments. A travel distance within one period is re-
ferred as one step length in the step detection technique.

• Step Detection Technique: While the mobile user is
walking, the step detection technique keeps sensing and
analyzing the sensed data received from the accelerome-
ter. Let’s assume that a series of acceleration magnitudes
has a form of a1, a2, . . . , an; where an is the most recent
data received and mapped to a bit according to

Q(an) =

⎧⎪⎨
⎪⎩

1 if an > μn + σn

0 if an < μn − σn

∧ otherwise,

where μn is the average of the series, σn is the corre-
sponding standard deviation, and ∧ is an undefined state.
The two thresholds μn + σn and μn − σn are the levels
for characterizing “up” and “down” patterns respectively.
This mapping yields a sequence of bits. The technique
then merges consecutive 1 s into a single bit 1, 0 s to 0,
and ∧s into ∧ to form a step with a pattern of “10” or
“1 ∧ 0”. Whenever a step is detected, it will be reported to
the map matching process for enhancing the localization
accuracy.

Estimating Travel Direction: Orientation of mobile devices
can be estimated using an embedded magnetic digital compass.
However, it is influenced by the environment and especially
the ways of holding the phone. Nowadays, applications tend
to use gyroscopes for direction estimation. Gyroscope data is
with respect to the Cartesian frame of reference of the phone
itself. The frame is represented by the orthogonal xyz axes with
the x-axis pointing to the right side of the phone, the y-axis
pointing to the top of the phone, and the z-axis leaving the
screen. Though the angular velocity varies over time, but the
value at each axis follows a recurring pattern. Therefore, in-
tegrating these three angular velocity values along time may
reduce the fluctuation. In addition, when a pedestrian walks in
a straight line, the average acceleration in any axis does not
fluctuate much.

Travel direction can be estimated using the angular displace-
ment based on gyroscope readings. The angular displacement
around all three axis are monitored to determine straight walk-
ing. Within a time window, the user is believed to be walking
along a straight line if all three angular displacements do not
exceed a pre-determined threshold. During the duration when
the user walks in a straight line, the acceleration readings are
averaged in each direction and the adjusted angular displace-
ment for an incoming turn is calculated as

AD = (αμx + βμy + γμz)√
μ2

x + μ2
y + μ2

z

, (3)

Fig. 7. Map Matching to estimate the position of the mobile device.

where α, β, γ are the angular displacements computed in the
first step, and μx, μy, μz are the acceleration readings averages
in each direction, respectively.

2) Motion Fingerprint Matching Technique: When a new
step or a new turn is reported from the DR algorithm, the
map matching is performed to incorporate this new information
for refining the user’s location. This is done by merging the
positioning data according to pre-defined digital map, which
estimates the user’s location in the best match to the digital map.

Map matching helps in correcting errors due to DR algo-
rithm. For instance, when the location of a moving car is
unexpectedly estimated at somewhere inside a certain building,
the map matching process will correct this estimated position
to the nearest road.

Fig. 7 shows a general block diagram of a map matching
process. Two inputs are required to pinpoint the position: posi-
tioning data and digital map. The digital map is often generated
in the form of a list of polylines in a graph. Due to errors
in the positioning system, the positioning data are often not
on any polyline provided by the digital map. Therefore, the
map matching is required to lay the estimated position on the
polyline.

3) Digital Map Construction: In order to improve local-
ization accuracy, a digital map is often used as a constraint
on the possible user positions. The returned location from the
DR algorithm, can be correlated with the map to estimate the
location of the user. The map is generated by using a subset of
points in 2D Euclidean space [34], or a set of segment markers
with the latitude and longitude tagged [35]. The combination of
continuous segment markers or points represents the roads and
paths in the map.

C. Signal Fingerprint-Based Localization

The basic concept of signal fingerprint-based localization is
to estimate the location of the mobile devices by matching
the received signal fingerprint against a previously recorded
database of known signal-location information. As a finger-
print technique, the database of signal fingerprints needs to be
constructed in advance. Therefore, this technique requires two
main phases: signal fingerprint populating phase (also known as
training phase or offline phase) and signal fingerprint matching
phase (also known as online phase). In the training phase, a
signal map is generated by exploring the signal fingerprint at
each reference location inside the area of interest. During the
matching phase, the location of the mobile device is estimated
by comparing the signal fingerprint generated one the device
with the pre-defined signal map. Fig. 8 summarizes the work-
flow of a signal fingerprint-based localization.

1) Signal Fingerprint Generation: When the mobile de-
vice enters the area of interest, a signal fingerprint matching
technique uses the currently observed signals and previously
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Fig. 8. Signal fingerprint-based localization.

collected fingerprints in the signal map to figure out an esti-
mated location. Originally, the signals are observed in disorder
ways, they must be organized to form a signal pattern in a
conventional structure like the pre-defined fingerprints in the
signal map.

The most common signal fingerprint used in conventional
techniques has a form as following:

Fi(x, y) = [RSSI1, RSSI2, . . . , RSSIN] (4)

where Fi(x, y) is the signal fingerprint generated at the ith

location of the mobile device with geo-coordinate (x, y), RSSIk

is the received signal strength indicator value at the ith location
from the kth WiFi AP or GSM BS, and N is the number of the
WiFi APs or GSM BSs.

Besides using RSSI values, several systems also use extra
parameters to construct the signal fingerprint. For instance,
LifeTag is a personal location-logging system based on the
PlaceEngine location platform [13], [36]. It estimates the loca-
tion of mobile devices by utilizing signal fingerprint including
MAC addresses and the RSSI of nearby APs as following:

F(x, y) = ([MAC1, RSSI1], . . . , [MACN, RSSIN]) (5)

where F(x, y) is the signal fingerprint at location (x,y), MACi

is the MAC address of APi, and RSSIi is the received signal
strength indicator value from the APi.

Also, the RADAR system [10] proposed by Microsoft con-
structs the fingerprint using a tuple of the form as:

F(x, y) = (d, [RSSI1, SNR1], . . . , [RSSIN, SNRN]) (6)

where F(x, y) is the signal fingerprint at location (x,y), d is
the direction of measurement, N is the number of the audible
WiFi APs or GSM BSs, RSSIi and SNRi are the received signal
strength indicator value and the signal-to-noise ratio from the ith
BS, respectively. The main challenge of these signal fingerprint
types is that the received signal could be affected by diffraction,
reflection, and scattering in the propagation environments.

While these conventional localization systems use signals
received at the mobile device to construct fingerprints, the
signal subspace-based techniques alternatively use the signals
received by an array antenna at the BS to generate fingerprints.

The array antenna receives signals from direct path and many
reflected multipath components simultaneously due to obstacles
in the propagation environments. The received signal x(t) at an
L-element array antenna from AOA θi with noise is modeled as

x(t) =
M∑

i=0

a(θi)si(t) + n(t) = As(t) + n(t), (7)

where M is the total number of direct and multipath compo-
nents, a(θ) is a steering vector denoting a phase shift of a
received signal at each antenna, and A is the steering matrix
of L × M. By using the received signal, the signal subspace
is constructed as the fingerprint for estimating the location of
the mobile device. This technique has been developed in both
indoor and outdoor localization [37], [38].

2) Signal Fingerprint Matching Technique: This is often
done by using Euclidean Distance-based Matching algorithm,
which consists of measuring Euclidean distances between the
recorded signal fingerprint and each reference location in the
database. The Euclidean distance between two fingerprints is
defined as:

dist =
√√√√ N∑

i=1

(RSSIRL(i) − RSSIML(i))2 (8)

where N is the number of WiFi APs or BSs, RSSIRL and
RSSIML are the RSSI vector at one reference location and the
measurement location, respectively.

The Euclidean distance indicates how close a fingerprint at
one reference location to the query fingerprint at the measure-
ment location. After the distances between the query fingerprint
to each fingerprint in the database are calculated, the Nearest
Neighbor algorithm is called to select the closest fingerprint.
Among the fingerprints in the database, the selected finger-
print has the smallest distance to the query fingerprint.

Signal Fingerprint Filtering: As the size of the surveyed
area in the training phase get larger, the size of the database
of signal fingerprints quickly increases. Every time when a
location is requested, matching the query signal fingerprint to
all the fingerprints existing in the database is too inefficient. To
improve the matching performance, it is necessary to reduce
the search space by keeping only signal fingerprints which may
affect to the localization result.

Several efficient methods have been used to accomplish this
idea. The simplest method is to select the AP which has the
strongest signal in the query signal fingerprint, and find all the
fingerprints in the database which contain this AP. Instead of
selecting only the strongest signal AP, an alternative method is
to select several APs in the query, and finds all the pre-defined
fingerprints which contain all these APs. For example, if the
user sends a query fingerprint which contains two APs X and
Y, with signal strengths RSSIX and RSSIY , respectively. The
search space can be reduced by searching for all the fingerprints
that contain both APs A and B, and where the signal strengths
are “close” to RSSIX and RSSIY . However, in order not to
eliminate the correct fingerprint, Quader et al. also showed that
this method must not be too restrictive [39].
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3) Signal Fingerprint Populating Techniques: There are two
techniques mostly used to create a signal map: War-driving
technique and Grid-based War-driving technique.

• War-Driving Technique: War-driving technique, also
called war-sensing, is the most common approach that
creates a signal map by war-driving an area of interest
and records signal fingerprints for reference locations in
the area. At each reference location, the technique col-
lects the location coordinates and respective RSSIs from
the APs or BSs. The collected RSSIs at each reference
location are then used to construct a signal fingerprint
which is unique to that location.

• Grid-Based War-Driving Technique: The purpose of this
technique is to construct the signal strength histogram for
the RSSI received from each base station at each location
in the fingerprint. Using the war-driving technique, how-
ever, requires the mobile user to stand at each location
for a certain time in order to collect enough samples
for constructing the RSSI histogram. This increases the
fingerprint construction overhead, as the war-driving car
has to measure the RSSI at each location for a certain
time.

To avoid this overhead, the grid-based war-driving
technique divides an area of interest into cells using a
gridding approach with a floor plan. The histogram is
then constructed for each AP/BS in a given cell using all
fingerprint locations inside the cell, rather than for each
fingerprint point [11].

D. Hybrid Fingerprint-Based Localization

Hybrid fingerprinting combines multiple fingerprint types
to achieve better accuracy [40]. There are several types of
integrations in hybrid fingerprint-based localization. Some sys-
tems combine multiple fingerprints, some are integrated with
standard positioning techniques. In some hybrid systems, in ad-
dition, ambient characteristics of the surrounding environment
(e.g., temperature, light, sound, humidity, and barometric pres-
sure), are also used as signatures for localization. Continuous
observation of such information can provide cues to identify
where a user is. For instance, the ambient sound recorded
by using a smartphone microphone can tell whether the user
currently is at home or market, on a bus or subway. Also, the
temperature and light together can indicate whether the user is
indoor or outdoor.

In practice, various types of environmental context infor-
mation are combined and integrated with other fingerprints to
give a robust localization result. Multiple sensors (e.g., ther-
mometers, hygrometers, pressure, light sensors) are activated
simultaneously to capture a rich set of ambient characteristics
for localization. SurroundSense system [41] is one example of
this trend. The system proposes four localization modes across
multiple sensors. Each mode comprises a different combination
of sensors such as WiFi-only mode, Snd-Acc-Lt-Clr mode
(which stands for sound, accelerometer, light and color mode),
Snd-Acc-WiFi mode (which stands for sound, accelerometer,
and WiFi mode), and SurroundSense mode (which is the
combined scheme with all modes of ambience fingerprinting).

Evaluation results show that the SurroundSense system can
achieve an average accuracy of 87% when all sensing
modalities are used.

IV. REVIEW OF OUTDOOR LOCALIZATION SYSTEMS

BASED ON FINGERPRINTING MODES

There exist many fingerprint-based localization approaches
that vary greatly in localization accuracy and energy consump-
tion. When selecting one localization approach, several key
aspects are considered such as mode of fingerprint as well as
localization performance in different environmental contexts.
This section classifies fingerprint-based outdoor localization
systems existing in the last decade based on fingerprint types.
A comparison of these systems is summarized in Table II.

A. Visual Fingerprint-Based Localization Systems

The basic idea of visual fingerprint-based localization is to
match a user generated query image against a database of
geotagged images for localization. One of the main challenges
of this is performance degradation as the size of the visual
fingerprint databases grows. As the size of the database grows,
the performance of this technique decreases in terms of lo-
calization accuracy, energy efficiency and high latency. Many
solutions have been proposed to address this problem. For
instance, Zhang et al. introduced an approach for large scale
image retrieval for user localization [8]. The idea is to segment
the large database of geotagged images for a large area into
a number of overlapping cells, and take advantage of coarse
position estimates available on modern mobile devices (e.g., via
base station triangulation) to reduce the search space. The CBIR
technique then matches the query image to only the images
located inside the area of interest (e.g., a region of a cell tower),
which helps improving the matching performance. For datasets
in Berkeley and Oakland, CA, made of tens of thousands of
images, this approach achieves 90% image retrieval accuracy
and 67% experiments within 50 m.

However, similar to [8], techniques such as randomized
kd-trees [42] and locality sensitive hashing [43], which seg-
ment a large environment like a city into several overlapping
subregions may lead to redundant retrieval result. Also, a major
challenge of visual-fingerprint localization is the transmission
data between the client and sever. Schroth et al. have proposed
an approach to avoid the redundant images and the network
delay [7]. By exploiting the statistics of the database, only
relevant features, which provide most information about the
location of the device, can be identified and downloaded.
The authors experiment the system using Google Street View
panoramas. By tracking the system every 3 s using realistic
video recording, a new set of tracked query features is uploaded
to the server. The set of tracked features is used to query the
full vocabularies to retrieve the visually most similar locations.
About 5000 selected visual words and their associated inverted
files are downloaded to the client within 3 s. Experiment results
show that at least one panorama is retrieved within 20 m for
82.3% of the track, and within 40 m for 91.0% of the track. By
eliminating the network delay, the authors facilitate a close to
real-time pose estimation on the mobile device.
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TABLE II
COMPARISON OF FINGERPRINT-BASED OUTDOOR LOCALIZATION SYSTEMS

B. Motion Fingerprint-Based Localization Systems

Although motion sensors in smartphones can be used to
detect movements of a mobile user, these sensors are highly
noisy. This leads to poor traveling distance and speed estimation

in standalone motion fingerprint-based localization systems. To
address this challenge, many solutions have been proposed with
the integration of the GPS module.
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GAC system introduced a low-energy localization technique
using the readings from motion sensors and the brief support of
GPS for synchronization [44]. Using Newton’s laws of motion,
the travel distance is calculated by taking the double integral
of accelerometer readings. However, due to the noise in the
accelerometer, error accumulates as time goes on. The main
idea is to reduce the accumulated error by turning on the
GPS briefly and infrequently to obtain an accurate location
estimate. Depending on the frequency of synchronization with
the GPS, there is a trade-off between accuracy and energy
consumption in this system. Experimenting the GAC system
in both highways and intra-city driving environments show that
the proposed system has exponential saving in energy, with a
linear loss in accuracy compared to GPS.

On the other hand, CompAcc employs DR algorithm and
Assisted-GPS (AGPS) to build an infrastructure-independent
localization system [35]. The walking speed and the orientation
of a mobile user are measured using accelerometer and elec-
tronic compass in smartphones. Using these readings and dead-
reckoning technique, CompAcc calculates the user’s walking
pattern or a directional trail. This direction trail is then matched
against possible path signatures, which are pre-generated within
an area of interest. Using infrequent AGPS readings, CompAcc
can periodically recalibrate the phone location, and use it as a
reference for further position estimation. The evaluation results
show that CompAcc could provide a location accuracy of less
than 11 m in regions, where today’s localization services are
unsatisfactory or unavailable. Although this technique is con-
sidered as a simple localization method without war-driving,
but it needs time-consuming calibration, and therefore it is not
suitable for large scale area.

APT proposed an outdoor pedestrian tracking system with
higher accuracy compared to the built-in GPS on smartphones
[34]. By using several useful observations such as the regular
movement patterns of pedestrians, the ability in distinguishing
between distant routes of GPS, and the simplicity of generating
augmented maps on smartphones, APT introduces a robust
DR algorithm and an error-tolerant algorithm for map match-
ing. Instead of detecting walking steps as usual, the proposed
DR algorithm finds the user’s acceleration patterns which can
reflect travel distance. The algorithm also estimates the walking
directions without requiring the user to hold the phone flat
out. While matching motion fingerprints against a digital map,
the proposed error-tolerant map-matching algorithm tolerates
possible errors of the DR algorithm. Using this tolerance and
the support of GPS, APT can eliminate ambiguous routes and
determine the correct route. The evaluation results show that
APT can achieve a localization accuracy within 5 meters, while
GPS-based approaches have error up to 15 meters.

C. Signal Fingerprint-Based Localization

There are many research and commercial systems that have
been built using both WiFi APs and base stations as beacons for
fingerprint localization. Place Lab is one of well-known exam-
ples of this technique for both indoor and outdoor positioning
[45]. In this system, the authors address both maximizing
coverage across people’s daily lives and the high-cost of in-

frastructure of previous localization approaches. They employ
radio beacon sources which all have unique or semi-unique
IDs (i.e., MAC addresses), and can be mapped appropriately
to maximize the coverage in most people’s daily lives. The
authors evaluate the localization performance by experimenting
the Place Lab system in three distinct neighborhoods of Seattle
with different densities of beacons like urban, residential, and
suburban. The result shows that Place Lab can achieve a median
accuracy of 15–20 meters in downtown Seattle where at least
three distinct beacons are seen during a 10 second window.
Compared to GPS, this accuracy is much lower, but unlike GPS,
the location covers almost 100% of users’ daily lives. In the
suburban area, such as Champaign, IL, and Durham, NC, the
experiment results in median accuracy just over 30 meters.

Another commercial WiFi-based location platform service,
called PlaceEngine, have been proposed using MAC addresses
and the RSSI of nearby APs [36]. This is a web service
that enables any device equipped with WiFi can determine
its current location, using a database consisting of more than
half a million estimated access point (AP) locations. Besides
War Driving, the signal database is constructed by combining
different methods such as (i) Warwalking—the WiFi signal
fingerprint is collected by walkers, (ii) End User Register—the
end users of the system explicitly register locations by using a
map interface, and (iii) Access Log Analysis—analyzing end
users’ query logs. However, the WiFi signals can be sensed
differently at a given time and place. Thus, it is difficult to deter-
mine the precise accuracy of the PlaceEngine server. The rough
estimation of the accuracy is on the order of 5 to 100 meters.
In addition, many PlaceEngine clients, such as web service or
mobile applications, have been created using the PlaceEngine
platform. Among them, LifeTag has been known as a personal
location-logging system that continuously and precisely records
one’s location history [13]. By sending WiFi information to
the PlaceEngine server, LifeTag can detect a user’s location
even indoors or underground, where it might normally not
be possible with GPS. Since the WiFi signal recording is
quick (typicall less than one second), the entire logging phase
takes 3 seconds to record the location of the mobile device.

Different from the above WiFi-based approaches, Paek et al.
presented a new energy-efficient localization technique, called
Cell-ID Aided Positioning System (CAPS), that provides better
accuracy than cell tower-based localization for various location-
based services [12]. With respect to energy efficiency, the
authors proposed a novel cell-ID sequence-matching algorithm
to estimate the location based on the history of cell-ID and GPS
position sequences that match the current cell-ID sequence. The
basic idea is based on the observation that, mobile users have
consistent routes and the cell-ID transition point that each user
experience can often uniquely represent the current location
of that user. By using a modified Smith-Waterman algorithm,
CAPS searches a matched cell-ID sequence with geotag in the
user’s history to extract accurate position information, without
activating GPS. The evaluation results show that CAPS can
improve energy efficiency by more than 90%, compared to
GPS-only approaches, while providing position accuracy com-
parable to that of GPS, and with errors less than 20% of the cell
tower-based triangulation.
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However, most signal fingerprint-based systems, including
[36], [45], use deterministic techniques to construct signal
fingerprints for these localization systems. Such techniques
can be piggybacked on these systems due to extra overhead.
By using a probabilistic fingerprint-based technique for GSM
localization, CellSense presents an alternative way to construct
fingerprints without incurring any additional overhead [11]. To
address this challenge, instead of measuring the signal strength
histogram at each fingerprint location for a certain amount of
time, the authors of CellSense divide the area of interest into a
grid and construct the histogram for each grid cell. This, not
only removes significantly the extra overhead of standing at
each location for a certain time, but also increases the scalability
by increasing the grid cell size, which can reduce the fingerprint
size. Moreover, to further reduce the computational overhead
of CellSense, the authors also proposed a hybrid technique,
called CellSense-Hybrid, that combines probabilistic and de-
terministic estimations to achieve both high accuracy and low
computational overhead. The result shows that the median
errors of CellSense are 42.43 meters and 27.86 meters in rural
and urban areas, respectively. On the other hand, the positioning
accuracy of CellSense is better than other signal fingerprint-
based localization techniques with at least 108.57% in rural
areas and at least 89.03% urban areas, and with more than 5.4
times savings in running time.

Although there are many researches on signal fingerprint-
based positioning techniques, the advantages of the spatial in-
formation were not utilized effectively. Nezafat et al. proposed
a subspace fingerprint localization, which localizes non-
cooperative transmitters in a micro-cellular environment dom-
inated by non line-of-sight (NLOS) propagation, using the
signals received by an array antenna at the BS [14]. This
fingerprint-based technique also requires construction of the
database in advance. The finer the spatial resolution of the
database, the more accurate the estimate of the localization.
However, the signal subspace for discrete measurement points
in this technique has a coarse spatial sampling interval of 100 m
used for interpolation, leading to big errors in location estima-
tion. To address this problem, Cherntanomwong et al. proposed
a method of the signal subspace interpolation to construct a
continuous fingerprint database[38]. By using the interpolation
of the signal subspace for discrete measurement points with
spatial sampling intervals of 5 m and 10 m, a continuous spatial
signature is regenerated. The authors constructed one database
which composes of the signal subspaces for every 5 m, and
another composes of the signal subspaces for every 10 m. The
experimental results show that the finer sampling interval could
achieve the more accurate location, with the estimation error is
less than 5 m for most locations.

D. Hybrid Fingerprint-Based Localization

Compared to standalone positioning techniques, the hy-
brid schemes have better performance in terms of accuracy
and energy efficiency. However, hybrid fingerprint-based ap-
proaches always require a fingerprint generation process, which
combines multiple sensed data collected from multiple sen-
sors to construct the hybrid fingerprints. The rest of this

section categorizes localization system based on types of hybrid
fingerprints.

1) Use of Multiple Fingerprint Modes: Anisetti et al. presents
a robust localization approach that could enhance the accuracy
in areas with poor signal and low accurate geolocation [31].
This is done by mixing the location information acquired with
the RSSI fingerprint and a landmark matching obtainable using
the smartphone camera. This work proposed a geolocation ap-
proach based on a time-forwarding algorithm using a database
correlation technique over RSSI data. Then, they integrate the
geolocation approach with a landmark recognition to improve
the signal-based geolocation approach. The performances of the
geolocation algorithm are carefully validated by an extensive
experimentation, carried out on real data collected from the
mobile network antennas of a complex urban environment.

Also, in order to improve the positioning accuracy of the
image-based localization system presented in [8], Hallquistet al.
present a sensor fusion approach which estimates the pose of a
mobile device in urban environments using readings from GPS,
accelerometer, and compass [40]. There are two steps in this
approach. In the first step, a city-scale image database is used
to find an image that matches the query image captured by the
mobile device. This technique, presented in [8], achieves 90%
image retrieval accuracy for a database of tens of thousands of
images in Berkeley and Oakland, CA. This database contains
three dimensional (3D) information, including the full pose of
each image and 3D point clouds corresponding to the depth map
of each image. In the second step, the matching image retrieved
in the first step and its associated pose in the global world
coordinates are used to recover the pose of the query image, by
taking into account the input from the accelerometer and com-
pass on the mobile device. The full orientation and the planes of
the mobile device are first detected, then the pose of the mobile
device is computed by estimating a homography transformation
matrix between the query image and the matching image,
constrained by the knowledge of the change in orientation
obtained from the mobile device gyro and augmented with 3D
information from the database. Characterizing the performance
of this approach for the dataset in Oakland, CA shows that 92%
of the queries are localized within 10 meters.

Unlike previous localization schemes, WheelLoc is pre-
sented as a continuous location service using an indirect ap-
proach which seeks to capture user mobility trace and obtain
point locations through interpolation or extrapolation [46].
WheelLoc records simultaneously both the base station IDs and
the user movements (e.g., the velocity and direction) estimated
from accelerometer and magnetometer readings. While the base
station IDs are used to obtain a map of the searching area, the
readings from these motion sensors are used to build the user
mobility trace. The mobility trace is then used as a sequence
of estimated distance and turns, which is afterward matched
to the most likely road segments on the map via a Hidden
Markov Model and Viterbi decoding-based matching process.
Depending on when the location query is issued, the point loca-
tion is obtained via time- and speed-aware interpolation or ex-
trapolation. The effectiveness of WheelLoc has been confirmed
through experimental results. Due to the use of low-power
sensors, the results from the experiments show that WheelLoc
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could return a location with an accuracy about 40 m, and con-
sumes only 240 mW energy. Compared with GPS and cellular-
based localization, WheelLoc is able to provide instant location
fix with significantly improved energy-accuracy tradeoff.

While the other approaches attempt to improve either local-
ization accuracy or energy efficiency, Dejavu has been proposed
as a system capable of providing both accurate and energy-
efficient outdoor localization [47]. The idea is based on the
fact that different roads have different sets of clues such as
bumps, bridges, and even potholes, which all affect the inertial
sensors of mobile devices as a unique signature to distinguish
the roads. Although Dejavu mainly employs a dead-reckoning
approach using the low-energy profile inertial sensors, but dif-
ferent from other dead-reckoning-based techniques Dejavu also
identifies unique signatures in the environment, i.e., landmarks
or anchors, and uses them to reset the error accumulation in the
dead-reckoning displacement. The experimental results show
that Dejavu could provide a median accuracy of 8.4 m in
city roads and 16.6 m in highways. This is 42.9% better in
median localization error than GPS in city driving conditions.
In addition, compared to GPS, Dejavu can extend the battery
lifetime by 347% due to the use of only low-power sensors or
sensors that are already running for other purposes, e.g., GSM
and opportunistic WiFi signal strength.

2) Augmenting Standard Positioning Techniques With Finger-
prints: Realizing the battery shortage problem of GPS-based
localization systems, various solutions have been proposed to
save energy using motion fingerprint. Rate-adaptive positioning
system (RAPS) is one example of the techniques which explore
the energy-accuracy trade-off by introducing novel techniques
for cheaply inferring when GPS activations are necessary
[16]. RAPS estimates user velocity from the location-time
history of previously measured velocities, and adaptively turn
on GPS only if the estimated uncertainty in position exceeds
the accuracy threshold. By using a duty-cycled accelerometer,
RAPS also efficiently estimates user movement and employs
Bluetooth communication to reduce position uncertainty among
neighboring devices. And finally, RAPS delays GPS activa-
tion if the identifier and the signal strength from the current
active base station indicates that previous activation attempts
at locations with comparable identifier and signal strength
information failed frequently. In other words, if RAPS detects
locations where GPS is unavailable, it avoids turning on GPS in
these cases. The evaluation results from experimenting RAPS
through real-world show that it has over 3.8× longer battery
lifetime as compared to continuous GPS sampling.

Similar to the RAPS system, LocationStudy focuses solely
improving the energy-efficiency of GPS using an accelerom-
eter based architecture [17]. Using the embedded smartphone
accelerometer, LocationStudy proposed a user mobility context
detection algorithm which could differentiate between subtle
activities with high accuracy such as being stationary (lying
down or sitting) and in-motion (walking or jogging). The
results of the proposed algorithm then can be used to manage
the process of turning-on and off location sensors (such as
GPS) embedded in smartphones on purpose of reducing energy
consumption. Evaluation of LocationStudy shows that it could
save the energy up to 27% in typical circumstances. Recently,

motion fingerprint-based localization systems have exploited
the possibility of using inertial sensors such as accelerometer
and compass, to measure the walking speed and direction of
a mobile user, and then estimate the location using a dead-
reckoning algorithm [34], [35]. However, these sensors are
highly noisy and could make the naive distance estimation
based on Newton’s Law unavailable because the error is ac-
cumulated. Recently, a metropolis localization system, called
SmartLoc [15], has been proposed to improve the localiza-
tion accuracy in metropolises by leveraging these sensors and
the GPS module of smartphones. To reduce the impact of
inherent noise and accumulated error, SmartLoc constructs a
predictive regression model to estimate the trajectory using
linear regression. Also, it detects the road conditions (e.g.,
bridge, traffic light, uphill and downhill), and recognize the
user’s driving status (e.g., turns, stops) as landmarks to cali-
brate the localization result. By using the user’s driving status
(e.g., turns, stops) and the road conditions (e.g., bridge, traffic
light, uphill and downhill) as landmarks, SmartLoc proposed
a self-learning driving model which could calibrate the lo-
calization result. This calibration strategy reduces the speed
and trajectory distance estimation error brought by the inher-
ent noise and dead-reckoning, and therefore the localization
accuracy is improved even when the GPS signal is weak.
The evaluations show that SmartLoc can improve the local-
ization accuracy to less than 20 m for more than 90% roads
in Chicago downtown, while the known mean error of GPS
is 42.22 m.

In addition, many research and commercial localization
systems attempted to find the trade-off between energy con-
sumption and localization accuracy. EnLoc is one such system
which quantifies this important trade-off and underlies a range
or emerging services [48]. From the preliminary experiments,
EnLoc proved that when power consumption is translated to
net battery life, GPS allowed for 9 hours, while WiFi and
GSM sustained for 40 and 60 hours, respectively. However, the
corresponding localization accuracies are rapidly dropped from
10 m, 40 m to 400 m. To optimize the localization accuracy for a
given energy budget, the authors of EnLoc developed a dynamic
programming solution to determine a schedule with which the
location sensors (GPS, WiFi, or GSM) should be triggered such
that the average localization error is minimized. By using an
anonymous student’s mobility profile for their experiment for
30 days, the results showed that for the given energy budget of
25% per a day the average localization errors are around 12 m.

V. COMPARISON OF FINGERPRINT-BASED OUTDOOR

LOCALIZATION SYSTEMS BASED ON

PERFORMANCE OBJECTIVES

Most of the existing fingerprint-based localization techniques
have focused primarily on either accuracy and complexity.
It is critical to achieve a good balance between accuracy and
complexity on mobile platforms. However, due to the lim-
ited battery and computing power of mobile devices, several
challenges exist when developing fingerprint-based localization
systems on mobile devices. For instance, multimedia process-
ing consumes high computational power and memory, which
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Fig. 9. Comparison of different Fingerprint-Based localization system with
respect to accuracy and energy efficiency.

makes it difficult to perform on mobile devices. In this sec-
tion, we compare the performance of the various fingerprint-
based localization systems with respect to positioning accuracy,
energy efficiency, and latency, as shown in Fig. 9.

A. Positioning Accuracy

Positioning accuracy across standalone fingerprint-based
techniques are lower compared to hybrid techniques. For in-
stance, standalone visual fingerprint-based systems often result
lower accuracy compared to the other techniques [8]. However,
by using visual fingerprint in conjunction with readings from
the GPS, accelerometer, and compass, Hallquist et al. improve
the positioning accuracy in the previous work [8] to less than
10 meters for 92% of queries [40].

Compared to visual fingerprint-based techniques, motion
fingerprint and signal fingerprint-based techniques are often
better in accuracy. However, due to the errors accumulated from
inertial sensors during the tracing process, motion fingerprint-
based techniques are often used in conjunction with standard
positioning techniques such as GPS, to recalibrate the estimated
location. For example, APT presents a signal fingerprint-based
technique which can achieve a localization accuracy less than 5
meters using the support from GPS infrequently.

Also, the accuracy of signal fingerprint-based techniques is
degraded due to the limit of WiFi signals or cellular signals in
outdoor environments. The positioning error varies depending
on the spatial resolution of signal fingerprints in the database.
For instance, the positioning accuracy of the PlaceEngine ser-
vice is on the order of 5 to 100 meters, depends on the WiFi
signal density at a given time and place [36].

B. Energy Efficiency

Fig. 9 shows that all of the fingerprint-based localization
systems consume less power than the GPS-based systems, due
to the use of low-power sensors embedded in mobile devices.
Among them, hybrid fingerprint-based techniques consume less
power. Many hybrid fingerprint-based systems such as RAPS
[16] or Dejavu [47], can increase the phone lifetime by more
than a factor of 3.8, compared to GPS.

On the other hand, visual fingerprint-based techniques on
mobile devices consume more power than the others. The
power consumption is high due to the use of compute-intensive
methods from computer vision and image processing on mobile
devices. Considering the limited processing power and battery
life of mobile device, recent visual fingerprint-based techniques
use client-server architecture to reduce the work at the mobile
devices [20]. The mobile device works as a client, capturing
images and sending each image to the server via a network
connection. At the server side, the content of the captured image
is analyzed to extract visual features as a fingerprint for the
image retrieval. The server performs the image retrieval, then
returns the result to the mobile client.

C. Latency

The latency of the localization process, or response time to a
query, plays a very important role in many location-based ap-
plications. The response time is measured from the time when
the fingerprint is sensed until the estimated location is returned.
Depending on the types of the fingerprints, the localization
processes may take different amounts of time to respond with
the location information. Among them, localization techniques
using motion fingerprints or hybrid fingerprints have less re-
sponse time compared to the others. For instance, WheelLoc
can return a location fix within 40 ms over 99% of time [46].

On the other hand, visual fingerprint-based techniques on mo-
bile devices often need more time to identify the location. This
happens due to the fact that the mobile devices have limited
processing power and the visual feature quantization is a time-
consuming process. Recent visual fingerprint-based techniques
adopt a client-server architecture to speed-up the localization
process. However, network transmission is time-consuming as
the amount of data transmitted to the server increases. To
address this problem, Schroth et al. propose an approach that
eliminates the network delay by sending only features tracked
from images to the server, and downloading only the relevant
information as a database features for localization [7].

VI. FUTURE DIRECTIONS IN USE OF FINGERPRINT

BASED LOCALIZATION TECHNIQUES

In this section, we take a close look at the applications
that can be enabled using fingerprint-based localization. We
identify the challenges that can be addressed and improvements
that can further enhance the capabilities of fingerprint-based
localization.

A. Applying Cross-Domain Techniques

Existing fingerprint-based localization can be improved if
they are augmented with cross-domain techniques from com-
puter vision, signal processing, machine learning. Examples
include solutions which reduce the complexity of the matching
process in visual fingerprint-based localization, such as [49]. By
incorporating computer vision techniques, the processing time
and the complexity in image matching process can be reduced,
which would increase the performance and the feasibility of
visual fingerprint-based localization technique.
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Use of techniques from machine learning research for faster
and more accurate pattern matching can also benefit the solu-
tions. For instance, genetic algorithms and game theoretic tech-
niques can help in balancing the trade-offs between conflicting
performance objectives.

B. Moving Towards Fingerprint-Based Navigation

Navigation applications can be a logical extension of the
fingerprint-based localization. Currently, motion fingerprint-
based localizations are employed in many navigation systems.
The challenge of applying other Fingerprint-Based approaches
for navigation are still being investigated, as shown in [50], [51].

C. Augmented Reality With Fingerprint-Based Localization

One of the important requirements for an Augmented Reality
positioning system is that it should work indoors and outdoors.
Standard localization techniques using GPS can fail in indoor
settings. Therefore, as the fingerprint-based localization be-
come feasible, many augmented reality techniques try to use
fingerprints for localization [52]. For instance, one augmented
reality system may want to access information related to some
remote objects (e.g., building, restaurants, hotels). The system
first identifies the location of the remote object of interest, then
uses location-based services to acquire the information of that
object, such as “how expensive the rooms in that hotel” or “the
closing time of a coffee shop within view”.

D. Seamless Indoor and Outdoor Location Systems
Using Fingerprints

Use of different fingerprints, like FM signals, has been ex-
plored for indoor localization [53]. Unifying fingerprint-based
techniques for indoor and outdoor localization can lead to
seamless tracking of user. Lau et al. had shown that RSSI based
signatures can be used effectively to track a user across indoor
and outdoor environments [54]. Adopting a single location
sensing technology, or switching between different fingerprint-
ing technologies transparent to the user, can lead to a truly
pervasive location sensing solution.

VII. CONCLUSION

Outdoor localization is an essential service used in many
location based applications. With the growing number of in-
built sensors on smartphones, several techniques have exploited
these sensors for to capture signatures of the environment,
and matched against these geotagged signatures to determine
location. In this survey, we present a review of fingerprint-based
outdoor localization. We explain the concept of fingerprint-
based localization and show how different techniques using var-
ious ambient cues fit into the general idea of fingerprint-based
localization. We classify the existing techniques for localization
based on different fingerprint modes, namely visual fingerprint,
motion fingerprint, signal fingerprint, and hybrid fingerprint.
Existing outdoor localization systems are reviewed based on the
use of fingerprint types and the performance of the systems are
summarized along the three performance objectives—accuracy,

energy efficiency and latency of localization. We also highlight
the use of fingerprint localization for enabling new applications
and related research opportunities.
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