
WhereAmI: Energy Efficient Positioning using
Partial Textual Signatures

Quoc Duy Vo Darius Coelho Klaus Mueller Pradipta De
Department of Computer Science

The State University of New York, Korea
Email: {rayvo, dcoelho, mueller, pradipta.de}@sunykorea.ac.kr

Abstract—Positioning systems can use signatures hidden in
a user’s environment to identify a location. Images are often
used to locate a place by identifying landmarks. In this work,
we present the use of texts in an image to identify a user’s
location. The key intuition behind this work is that a collection of
names of business appearing in an image forms a bag-of-words
that provides a unique signature for a location. We use Optical
Character Recognition (OCR) to detect the texts from an image.
However, use of OCR in outdoor settings is resource intensive,
and text detection is often error prone in uncontrolled settings.
We develop an algorithm that can handle partial errors in the
collection of business names to locate the user. Partial errors
in text detection are handled by using similarity scores based
on approximate text matching. We also limit the resource usage
by partitioning the application between the smartphone and a
cloud based web service to save energy. We have implemented
the positioning system, called WhereAmI, on Android based
smartphone. The experimental results show that WhereAmI can
be an alternative positioning technique for GPS in terms of
accuracy, precision, energy efficiency and positioning latency.

Keywords—Positioning System, System Design, Computer Vi-
sion, OCR, Android, Mobile HCI, Web Service, Energy Efficiency

I. INTRODUCTION

Smartphones equipped with GPS receivers have enabled
many personal positioning systems and numerous location
based services which depend on the location information. GPS
is the most well-known technique for outdoor positioning with
high accuracy. However it has a high battery drain [1], [2],
moreover GPS availability is limited in many scenarios, like
indoors, urban canyons, and unclear view of the sky. For many
applications where accuracy can be compromised, other energy
efficient approaches are preferred. Cellular network positioning
is low in accuracy, but is more energy efficient [3]. WiFi
positioning is more accurate than cellular network positioning,
but it is not suitable for outdoor localization due to the lack
of access points.

Presence of low cost sensors (e.g. accelerometer, gyro-
scope, camera) on smartphones has motivated research on
positioning systems that can sense environment signatures for
localization. Although these positioning systems may be less
accurate than GPS, these are often more energy efficient [4]–
[8]. Nowadays a camera is present in all smartphones. Images
captured by a user can be analyzed to detect landmarks that
identify a location. But such image processing techniques are
compute intensive and slow, which leads to battery drain.

In this paper we present WhereAmI, a lightweight approach

to enable image based positioning using smartphone cameras.
We argue that the collection of names of business places,
buildings, prominent points of interests, and other fixed textual
markers appearing together in a single image forms a unique
signature for a location. Our goal is to collect these textual
signatures from a picture to generate a unique bag-of-words.
The keywords are then matched against texts extracted from
geotagged business names to determine the location. The
text from the user generated image can either be determined
automatically using Optical Character Recognition (OCR) or a
user can aid the OCR process by identifying the text. Even if
the user cannot read the language, it is easy to determine the
textual signs. For example, a user trying to find her location on
a map can take a picture of the neighborhood, mark the texts,
and get the location. The process of matching is triggered by
uploading only the texts from the phone, thereby reducing the
bandwidth requirement compared to uploading an image. Even
a short message (SMS) will be adequate to upload the texts.
Matching texts is also faster compared to matching images.

There are two major challenges in implementing Where-
AmI. First, OCR libraries for smartphone platforms are re-
source hungry and drain battery [9]. Therefore, performing
complete text detection process using OCR on outdoor images
on a smartphone is not an energy efficient solution. We propose
a practical solution to easily identify text areas in an image
captured by the user instead of using complex automatic
text detection techniques. We also partition the text detection
operation between a smartphone and a cloud based web service
to reduce energy consumption. Secondly, text detection from
natural scenes is a difficult problem and OCR libraries often
return texts with errors. Therefore, our design must be able
to work with partially correct text signatures. While matching
the bag-of-words against the database of keywords, instead of
searching for an exact match, we use results that approximately
match and use the similarity score to derive the final result. We
have implemented WhereAmI on Android based smartphones
and evaluated its performance in different outdoor settings.

In summary, the main contributions of this work are:

• We design a text-based positioning system, that combines
OCR on images captured by users using smartphone
cameras, and matching collection of texts from the images
to geotagged texts for positioning.

• We show how to overcome the limitations of OCR on
outdoor images by identifying texts using user guidance.
In order to overcome the errors in OCR based text
recognition, we present a keyword matching algorithm
that can handle partial errors in the query keywords.

• Based on an implementation of the system on an An-
droid based smartphone, we evaluate the performance of
WhereAmI in terms of positioning accuracy and preci-
sion, power consumption, and latency of positioning.

The remainder of this paper is organized as follows.
Section II presents the system design of WhereAmI, followed
by the implementation in Section III. Section IV reports experi-
ment evaluation of WhereAmI. Prior researches on positioning
relevant to our system are presented in Section V. We conclude
in Section VI.

II. WHEREAMI SYSTEM DESIGN

In this section, we present the design challenges of Where-
AmI system. We also introduce the workflow and the detailed
implementation of each component in the system.

A. Design Challenges

The key function of the front-end process is to extract
texts from an image clicked by a user using a smartphone.
Off-the-shelf OCR software works well for text extraction
from scanned documents and for reading labels [10]. Recently,
OCR have been also used for indoor localization, such as
CheckInside proposed by M.Elhamshary et al, which leverages
the crowd-sensed data collected by users’ mobile devices to
extract indoor business names for localization [11]. In outdoor
scenes, however, the OCR performance degrades due to var-
ious uncontrolled parameters, like uneven lighting, complex
backgrounds, varying fonts, and moving objects.

Many OCR-based text recognition techniques for outdoor
environment have been proposed with the aids of image
processing techniques [12]. Despite these advancements, the
text extraction process using OCR is error prone. Therefore,
a keyword matching algorithm must be designed to handle
partial errors in keywords. The matching process must not
depend only on exact match, and must use similarity scores
denoting how closely an incorrect keyword matches the correct
one in the database.

The success of the localization scheme hinges on the
principle that a combination of names generates a unique
signature of a place. However, if we consider popular store
names around the world, then many of the names can occur
in a group in the same location. For example, it is not unusual
to find multiple coffee shops, like Starbucks and Dunkin
Donuts in the same area. Although increasing the number of
keywords in the combination can improve the accuracy, still a
better option is to narrow down the search space with respect to
the matching performance. We need an approximate location
of the user which can be used as the anchor point to guide
the matching process. This anchor point can be computed
using approximate coarse localization available on most mobile
devices, such as via cell tower triangulation or the location of
the current cell that the mobile device is connecting to.

B. WhereAmI Workflow

WhereAmI consists of two main components: the front-
end of WhereAmI is an Android application that runs on the
user’s devices (i.e. smartphone), and the backend component
designed as a web service that executes the text matching ser-
vice. The workflow begins with a user starting the WhereAmI

app on her Android smartphone. The app provides the user an
interface to click a picture of her surrounding area. Once the
picture is saved, the text recognition process triggers.

In the next phase, the collection of texts extracted from the
text recognition process is sent to the text matching service
for positioning. There are two key steps in the text matching
service: (a) cell tower based zoning to narrow down the search
space, (b) matching texts against a database of geotagged
texts within the zone to pinpoint a location. Fig. 1 shows the
sequence of steps in the workflow.

C. Text Recognition Process

Three key steps in the text recognition process are, user
guided image fragment determination, cleansing the fragments
using a combination of image processing techniques, and text
recognition using OCR.

1) User guided Image Fragment Extraction: Automatic
text recognition using smartphones is computationally expen-
sive and energy hungry, as well as, low on accuracy for natural
scenes. To address this limitations, we introduce a human-in-
the-loop step, which requires the user to highlight the relevant
texts. User-in-the-loop approach helps in picking permanent
signs that uniquely identify a location since a user taking a
picture will be better at eliminating the temporary signs, like
signs on moving vehicles, while highlighting the texts in the
image. The highlights make it simpler to locate and construct
a bounding box around the marked text area.

We use the flood fill algorithm to compute the extreme
points of the highlight. The flood fill algorithm works by
searching for a seed pixel (start point) for each highlight and
testing whether its neighboring pixels belong to the highlight
until it reaches the edges of the highlight. In our method we
store the point on the screen that the user touches at the start
of every highlight, and use the points as the seed pixels for
each highlight. This eliminates the need to search for the seed
pixel thereby reducing the processing time of the flood fill
algorithm. We also handle overlapping highlights by merging
them as they are considered as one continuous highlight. We
use the computed extreme points to create a bounding box
with additional 10 pixel padding. The bounding box areas are
cropped from the original image and form the image fragments
containing keywords chosen by user.

2) Image Fragment Cleansing: The cleansing step extracts
the text from the fragments and removes irrelevant content,
such as the background and other non-text objects, from
the image segment. First we compensate for the uneven
lighting that occurs in natural images by performing contrast
enhancement on the fragments. Next, we apply Stroke Width
Transform (SWT) to compute the text strokes in the fragment.
SWT is a local image operator which can efficiently extract
connected components during text detection [13]. Finally we
binarize the stroke width image such that we are left with black
text on white background. This process of binarizing the image
improves the performance of the OCR tool.

3) Text Recognition using OCR: The OCR engine operates
on binary image fragments containing a keyword. There are
many standard libraries for OCR on smartphones and servers.
The OCR engine should also support multiple languages. The
two operations, viz. image fragment cleansing, and text recog-
nition using OCR, are compute intensive. Hence performing
the steps on a server can save smartphone battery at the cost

Fig. 1: WhereAmI system workflow showing the progression of steps in time. WhereAmI system architecture showing the steps
in the system. The picture shows the correlation between the steps and its implementation.

of spending relatively less network card energy to upload few
KiloByte sized segments to a web service.

D. Text Matching Service

There are two key steps in the text matching service - cell
tower based zoning and the keyword matching algorithm.

1) Cell tower based Zoning: In our system, we use the lo-
cation of the cell tower in order to limit the search space. This
location can be obtained by sending a request to Google Maps
GeoLocation API 1 with the telephony service information
on the smartphone. Using this coarse location, the matching
algorithm is guided to search only the business names whose
coordinates are within a fixed radius of the cell tower.

2) Keyword Matching Algorithm: The keyword matching
algorithm takes as input the set of keywords returned by
the text recognition phase, and the coordinates of the cell
tower. It also requires two parameters, SearchRadius and
NeighborRadius. The SearchRadius determines the distance
from the cell tower within which we want to search for the
combination of texts. It is usually the coverage radius of the
cell tower set in kilometer range. The NeighborRadius is used
to find the names which are clustered near each other and can
lead to a solution. Hence it is chosen in the range of meters.
The algorithm, as shown in Algorithm 1, begins by generating
vectors of strings, Pi, for each keyword, Ki (Line 2). The
GText function in Line 2 returns a set of business names
matching a keyword within searchRadius distance around the
anchor point. It performs an approximate match, and the results
are ordered according to the closeness of match. Thus, Pi

contains the names of all businesses within the SearchRadius
that matches Ki. Since OCR may not detect all keywords
correctly, an attempt to match Ki exactly to the names of the
businesses can fail. If there are multiple business with similar
names, Ki, then all of them are returned as separate strings in
Pi. Each of these strings denotes a candidate location around
which the other keywords could be found, and lead to a match.

1Google-Geolocation: https://developers.google.com/maps/

Since there can be partially correct keywords, we approx-
imately match the text where partially matching keywords or
business names are returned along with a similarity score.
As the number of the business names returned by matching
one keyword increases, the algorithm will take longer to
terminate, increasing system response time. Therefore, we
reduce the size of the result set by selecting only businesses
which have the same or similar names to the keyword Ki

using a SimilarityFilter function (Line 36). The selection is
governed by a threshold, called FilterThreshold. Higher
value of FilterThreshold blocks more keywords returned
by GText, and the algorithm terminates faster. However, ag-
gressive blocking may eliminate the actual business name
we are interested in since an erroneous keyword may match
some other keyword with higher similarity value and degrade
the positioning accuracy. After the filtering process based on
SimilarityFilter function, the set of remaining business names
is sorted according to distance from the anchor (Line 5). It is
now possible to combine this location coordinates to infer the
user’s location. Note that, smaller cardinality of Pi indicates
that Ki is a less common business name in the area. Therefore,
beginning the search in the neighborhood of a least common
Ki will converge faster. Hence we sort the Pis based on the
cardinality of the Pis (Line 8).

In the procedure searchNeighbor, first a business name,
say φ, from Pi is picked in the order they were retrieved.
The GNeighbor function takes as input the location attribute
of φ, and retrieves all the business names around φ within
neighborRadius distance (Line 20). If φ is in the area where
the user is, then the neighborhood business names vector, Nj ,
should contain the rest of the keywords. Line 22 searches for
this match across n − 1 Pis corresponding to the remaining
Kis. If all the keywords are matched, the search terminates and
the ResultSet contains all the businesses which the user marked
and is in her surrounding. We compute a bounding box using
all the locations in the ResultSet and assign the midpoint as
the user’s location on the map.

However, if any one keyword is inaccurate, then GText

Algorithm 1 WhereAmI Keyword Matching Algorithm

Require: A list of n keywords K = K1,K2, ...Kn
Require: Coordinates of the cell tower: (Coord(T) = Tlat, Tlon
Require: SearchRadius, NeigborRadius, FilterThreshold

1: for i = 1 to n do
2: Pi = GText(Ki, Coord(T), SearchRadius)
3: Pi = SimilarityFilter(Pi, Ki)
4: /* sort elements in Pi in increasing distance to the anchor */
5: Pi = πm

1 (P j
i) /* m is the number of elements in Pi

6: end for
7: /* sort Pis in increasing count of elements per set */
8: P = πn

1 (Pi)
9: ResultSet = {} /*ResultSet will be used to compute the location*/

10: for i = 1 to n do
11: Set S = Pi
12: located = searchNeighbor(S, i)
13: if located == TRUE then
14: break;
15: end if
16: end for

17: procedure Boolean searchNeighbor(Set S, int keyId)
18: for j = 1 to |S| do
19: curResultSet = S[j]
20: Nj = GNeighbor(Coord(S[j]), NeighborRadius)
21: for (z = 1 to n) && (z 6= keyId) do
22: if (Nj

⋂
Pz) 6= NULL then

23: curResultSet = curResultSet
⋃

(Nj

⋂
Pz)

24: end if
25: end for
26: if |curResultSet| == n then
27: ResultSet = curResultSet;
28: RETURN TRUE;
29: end if
30: if |curResultSet| > |ResultSet| then
31: ResultSet = curResultSet;
32: end if
33: end for
34: RETURN FALSE
35: end Procedure

36: procedure Set SimilarityFilter(Set P, keyword)
37: perfectSet = {} ; filterSet = {}
38: for k = 1 to |P | do
39: Similarity(P[k], keyword)
40: if P [k].Similarity == 1 then
41: perfectSet.add(P[k])
42: end if
43: if P [k].Similarity >= FilterThreshold then
44: filterSet.add(P[k])
45: end if
46: end for
47: if |perfectSet| > 0 then
48: RETURN perfectSet
49: else
50: RETURN filterSet
51: end if
52: end Procedure

53: GText(keyword, anchor, SearchRadius):
54: returns a set of locations matching keyword Ki within SearchRa-

dius from anchor.

55: GNeighbor(anchor, radius):
56: returns a set of locations within radius distance from anchor

would not retrieve any business name that exactly matches the
keyword. Instead it will return all the business names closely
matching the keyword. This leads to Line 22 returning null
at least once implying that a keyword is not in the cluster,
although the rest of the keywords may have matched. We
ensure that in such a scenario we take the largest cluster
(Line 30). However, if the cluster size is less than n/2, then we

report failure to localize. In case of a failure, the user is sent a
feedback to take another picture, and the process is repeated.

Note that although the complexity of the algorithm is
O(n2 |S|), we found empirically that typically 3 keywords are
sufficient for the algorithm to locate a user’s location.

III. WHEREAMI SYSTEM IMPLEMENTATION

In this section, we present the implementation of Where-
AmI, as shown in Fig. 1.

A. Text Recognition Process

The text recognition process including image fragment
extraction, image fragment cleansing, and text recognition,
can be implemented entirely on the mobile Android platform.
Since this implementation requires C++ source libraries, we
use the Android Native Development Kit (NDK) to compile
the libraries. In order to implement the highlighting feature,
we use the OpenCV library which provides all of the image
processing functionalities. The implementation of the image
fragment cleansing uses the SWT source code from Kumar and
Perrault [14]. Kumar’s implementation additionally requires
the Boost C++ libraries2, along with OpenCV. The OCR
functionality uses the open-source Tesseract OCR engine3,
which has multi-platform support, including Android, and
provides multi-language capability.

In the alternative implementation, the OCR process is per-
formed as a Web service with respect to energy efficiency. The
client application uploads image fragments that are extracted
based on keywords highlighted by a user in an image. At the
Web service, the texts are extracted from the fragments using
the same OCR engine (Tesseract OCR). The client application
uploads image fragments that are extracted based on keywords
highlighted by a user in an image.

B. Location Determination

The implementation of the matching algorithm requires
access to a database with names of business along with their
geolocation. Google Places provides the API to access a
large database of business names along with their location
coordinates. We implement the GText and GNeighbor functions
mentioned in the algorithm using Google Places API. GText
allows to search for a specific business name within a given
radius from the anchor location. GNeighbor allows to search
for all business within a given radius for each specific business
name. The maximum radius is limited to 20km.

A limitation of the Google API used to implement GText
function is that one query sent to the API can get a maximum
result set of 60 business names. Due to this limitation, the
NeighborRadius parameter while searching the neighborhood
must be chosen carefully. If the radius is too small, then the
business names from the image may not be considered in the
result. We uses 20m as NeighborRadius in our algorithm.

2Boost C++ libraries - http://www.boost.org/
3Tesseract - https://code.google.com/p/tesseract-ocr/

IV. SYSTEM EVALUATION

In this section, we first present the performance of the text
recognition process proposed in our system. Next, we evaluate
WhereAmI with respect to positioning accuracy, precision,
energy efficiency, and latency. The experiments were done at
different outdoor areas in Seoul downtown and suburban areas
under different external settings, like areas with high density
of buildings, different weather conditions, and time of day.
A. Text Recognition Performance

We evaluate the accuracy of Tesseract OCR library and
show the effectiveness of the cleansing step to improve text
detection accuracy. We also generate an error model to repre-
sent the extent of error in the text recognition process.

Fig. 2: Probability of the degree of error in a keyword while
using OCR for text detection in two scenarios - OCR with
and without image cleansing. The equation for error model of
OCR with image cleansing is shown.

We create our test set by collecting images acquired using
WhereAmI and images from the ICDAR datasets and Google
Street View. Text fragments containing keywords are extracted
from these images using WhereAmI’s fragment extraction pro-
cess. In order to measure the extent of errors introduced by the
text detection process, we measure the number of characters
that are recognized incorrectly, and report the percentage error.
We conducted two experiments - OCR on image fragments
with and without the cleansing step to determine the usefulness
of the cleansing step to improve text detection accuracy.

Fig. 2 shows the cumulative distribution of the percentage
error in text detection for the two experiment scenarios. The
figure shows that 37% of keywords in the dataset images could
be recognized without any error, while 75% of the keywords
could be detected with at most 34% error using the cleansing
step. But without the cleansing step, 34% of keywords could
be recognized without any error and 75% of the keywords
could be detected with at most 85% error. We conclude that
the cleansing step improves the accuracy of the text recognition
process. For further experiments, we fit a curve to the CDF plot
that acts as the error model (y = −7E-05x2+0.013x+0.3443)
for the text recognition with cleansing process (SWT + OCR).

B. Positioning Accuracy

Positioning accuracy of WhereAmI is evaluated by com-
paring the ground truth location of the user to the one reported
by WhereAmI. Due to the fact that Google Places and Google
Earth share the same databases of business places, we use
Google Earth to pinpoint a specific location and obtain its
coordinates as the ground truth location. With the reported

(a) Success and Failure rate of WhereAmI in percentage.

(b) Distribution of the positioning error in terms of distance from
actual location.

Fig. 3: Positioning accuracy of WhereAmI when all keywords
are correct.

(a) Success and Failure rate of WhereAmI in percentage.

(b) Distribution of the positioning error in terms of distance from
actual location.

Fig. 4: Positioning accuracy of WhereAmI when at least one
keyword is incorrect.
granularity of Google Earth images4, we can determine the
actual position of the user within an average error of 0.5 meter.

We conduct a real walk to collect images of signs at
71 outdoor locations across downtown and suburbs. Using
keywords extracted from the collected images, we first measure
the capability to identify the user’s location and the positioning

4Google Earth: https://www.google.com/earth/media/features.html

Fig. 5: Positioning error of WhereAmI relative to positioning
error of GPS.

error of WhereAmI, assuming OCR works perfect. Next, we
show how the matching algorithm can handle incorrect or
partial keywords, assuming there are some errors in OCR.
Finally, we compare the positioning error of WhereAmI with
respect to GPS. For the purpose of experiments, we also
implement a text input interface in WhereAmI such that a user
can input the names of the business places for localization. It
enables controlled experiments with or without OCR errors.

1) Measuring positioning accuracy using correct keywords:
The success/failure rate of WhereAmI is shown in Fig. 3a. As
the number of keywords increases in one request, success rate
of the matching algorithm improves. Fig. 3b summarizes the
statistics of positioning error. The figure shows that WhereAmI
can locate a position within 20m accuracy in 90% cases,
while positioning failed in 8% cases. On average, WhereAmI
achieves positioning error of about 11.8 meters. When a
business name is not registered in Google Places, WhereAmI
fails. In 2% cases positioning error was greater than 20 meters.
When only one keyword is used, and it is not unique in the
neighborhood, multiple locations are returned by Google Place
API. It is not possible to identify which location is correct. The
location, which may not be the correct location but closest to
the cell tower, will be selected.

2) Measuring positioning accuracy using incorrect key-
words or partial keyword: Using the error model of the text
recognition process, as explained in Section IV-A, errors are
introduced in the keywords. We randomly pick a value between
0 and 1, and calculated the percentage of error in one keyword.
Using the percentage of error, we changed a few alphabets to
add an error to the keyword before sending it to the keyword
matching algorithm. For example, given a business name, JNM
Fashion, we choose a random number 0.6, which gives the
error rate as 22%. We change two characters, which is 20%
of the length of the string, viz. JMM Fashian.

Fig. 4a and Fig. 4b show the success/failure rate and the
positioning error of WhereAmI, respectively. The success rate
increases when the number of keywords increases. However,
the failure rate is higher than that of cases where only correct
keywords are used. Two factors contribute to the high failure
rate. First, a business name may not be registered with Google
Places database. Second, the Google Places API fails to
retrieve any business name due to errors in the keywords.

3) Comparison of Positioning Error: We compare the
positioning error of WhereAmI with respect to GPS using the
following metric, Relative Positioning Error (RPE).

RPE =
Positioning ErrorWhereAmI

Positioning ErrorGPS

Fig. 6: Comparison of standard deviation of GPS positions
with respect to WhereAmI location for each reference place.

Fig. 7: Power consumption of WhereAmI over 3G network,
compared to that of GPS.

The location returned by GPS is obtained using the Location
Manager module of the Android Framework. In each experi-
ment, we record the location using both WhereAmI and GPS.

Fig. 5 shows the relative positioning error between Where-
AmI and GPS. When RPE is less than 1, the positioning
error of WhereAmI is smaller than that of GPS. The figure
shows that in about 95% of the cases WhereAmI returns
lower positioning error compared to GPS. This is because
positioning using WhereAmI is based on getting the keywords
and successfully matching them against Google Places. Unlike
GPS, WhereAmI is not affected by environmental conditions
(e.g. high density of buildings, bad weather condition).

C. Positioning Precision

In this section, we evaluate the positioning precision of
WhereAmI, compared to that of GPS. We experiment Where-
AmI at 10 reference places which have different building
densities. At each reference place, we measured the locations
returned by both GPS and WhereAmI multiple times using the
same set of business names, but under different settings (e.g.
weather conditions, times of a day, different days).

Fig. 6 shows the standard deviation of GPS positions
compared to that of WhereAmI location for each reference
place. The geo-coordinates returned by WhereAmI at each
place do not change regardless of different settings. This is
due to the fact that WhereAmI positioning technique is based
on getting the keywords and successfully matching them.
Therefore positioning using WhereAmI is precise as long as
the business names in the area remain unchanged. However,
the geo-coordinates obtained by the GPS module at each place
varies every time the settings change. This is because GPS
signals are distorted by the environmental conditions.

D. Power Consumption

We measure the power consumption of WhereAmI in two
different cases: Case-1 where the OCR process is performed on

Fig. 8: Power consumption of WhereAmI in two cases (Case-1
OCR on the smartphone and Case-2 OCR on the server).

the smartphone and the keywords are uploaded for positioning,
Case-2 where highlighted fragments are uploaded to the server,
and the OCR process is performed on the server. We also
compare the power consumption of WhereAmI in both cases
to GPS. Finally, we evaluate the effect of increasing number
of highlighted fragments on power consumption.

We use Monsoon Power Monitor5 to measure the power
consumption of WhereAmI over 3G network. We experiment
WhereAmI using images consisting of multiple business names
at 16 different places. At each place, we also profile the power
consumption of GPS on the same test phone. After the GPS
module is called, it starts receiving GPS signals to compute the
location. Due to the environmental conditions, the GPS module
waits for the signals until it receives enough information to
calculate the location. Since the power consumption of the test
phone fluctuates during the positioning process and remains
stable after the positioning is successful, we can easily isolate
the power consumption of the GPS module.

Fig. 7 shows the comparison of the power consumption
of WhereAmI in both cases versus GPS. On average GPS
consumes 665mW of power and WhereAmI consumes 778mW
of power in Case-1, while there is only 639mW consumed in
Case-2. The experimental results show that the average power
consumption of GPS is less than that of WhereAmI in Case-2,
but higher than that of WhereAmI in Case-1. In other words,
WhereAmI with the OCR process on the server could be used
as an energy efficient positioning technique, compared to GPS.

To evaluate the effect of increasing number of highlighted
fragments on power consumption, we experiment WhereAmI
with an increasing number of highlighted fragments in each
experiment. Fig. 8 shows that positioning using Case-1 con-
sumes more power than positioning using Case-2. Although
sending a group of texts consumes much less power than
sending crops of fragments, the power consumption required
for the text detection process is much higher than the power
required to send the crops of fragments.

E. Response Time

In this section, we evaluate the response time of matching
algorithm, compared to that of GPS. The response time is
computed with respect to the increasing number of keywords.

Table I shows that the number of keywords increases, the
response time increases. In the worst case, it could take close
to 8 seconds to locate the user. Since none of the keywords are
unique, the algorithm needs to search for matches in multiple

5Monsoon Power Monitor http://www.msoon.com

Fig. 9: Comparison of the failure rate in two scenarios: (i)
keywords with 10% error, and (ii) keywords with 20% error.

neighborhoods, hence taking longer. On the other hand, some
queries could run fast even if the number of keywords in the
query increases. This is because some keywords in the query
can be unique or less common keywords, and the algorithm
converged quickly in the first few iterations. On average, the
matching algorithm takes about 2.9 seconds for positioning.

Mean (s) Standard De-
viation (s)

Min
(s)

Max
(s)

1 keyword 1.7 0.2 1.4 2.3
2 keywords 3.0 1.1 1.8 5.9
3 keywords 3.9 1.2 2.3 7.4
GPS 12.5 1.8 10.3 15

TABLE I: Numerical summary of the response time of the
matching algorithm compared to GPS.

We also measure how long GPS takes to identify the loca-
tion. The experimental results show that the GPS module needs
around 12.5 seconds on average to complete the positioning.
In comparison with WhereAmI, GPS takes longer to find the
location due to the fact that it has to wait until it receives the
satellite’s signal before computing the location. It takes more
time to complete the positioning in cases where the satellite’s
signal is blocked by an obstruction or interference.

F. Sensitivity Analysis

We verify the effect of FilterThreshold on the failure
rate with increasing errors in keywords. As mentioned in
Section II-D2, selecting the value of FilterThreshold affects
the performance of the keyword matching algorithm. When the
input keywords are partially incorrect, increasing the value of
FilterThreshold can terminate the algorithm faster. However,
this may degrade the positioning accuracy of the algorithm.

We used 14 test images which consist of multiple business
names. From each image, we extracted a collection of the
business names appearing in the image. Since keywords with
high percentage of errors may not be identified by Google
Places, we only introduced 10% and 20% error to the keywords
to generate two sets of partially incorrect keywords.

Fig. 9 shows how increasing the value of FilterThreshold
impacts positioning performance as the error rate in keywords
goes up. We evaluate two error rates: (i) keywords with 10%
error, and (ii) keywords with 20% error. In both scenarios, the
failure rate increases when the threshold increases. Since there
is an error in the input keyword, its similarity index is always
less than 1. Therefore, as the threshold increases, the keyword
with lower similarity index is blocked.

The failure rate in the first scenario is less than in the
second scenario. As the keyword error rate increases, the
failure rate increases. With higher errors in a keyword, the
similarity index decreases and the algorithm discards keywords
that do not match closely. Therefore, as the threshold increases,
the keywords with higher errors are blocked. However, since
we start with partially correct keywords, the filtering process
may discard the actual business name we are interested in. We
observe that the matching algorithm successfully identifies the
location when the threshold is less than or equal to 0.2 in all
cases. Therefore, we set the default value of FilterThreshold
to be 0.2 in the prototype.

V. RELATED WORK

Presence of multiple sensors in smartphones has opened up
the design space of fingerprint-based localization. The key idea
behind is to discover signatures of a location, and match the
observed signatures against a database of geotagged signatures.
Several works have been explored using signatures in different
forms for both indoor and outdoor positioning [4], [15]–[17].
SurroundSense explores the presence of signatures in logical
labels of a place in the form of sound, light, color [4]. It is
targeted towards indoor environments for precise positioning.
Wireless signals also can be used as fingerprints as signatures
for localization in recent decades [16]. Other works using
images of a location for matching come close to our work [15],
[17]. The idea is to match an image of landmarks against a
database of geotagged images to find the place. Schroth et
al. proposed a localization technique for large scale image
retrieval by segmenting a large database of geotagged images
into overlapping cells to narrow down the search space, with
respect to the localization performance [15]. These approaches
which work on the whole image is compute intensive, and
were not designed as a lightweight system suitable for mobile
devices. WhereAmI is proposed as a lightweight localization
technique which uses only texts extracted from taken images.

Given the choice of different modes of outdoor positioning,
there is a tradeoff between energy and accuracy in designing
a system. Dejavu uses different features of road landmarks
(i.e. tunnels, bumps, bridges, and even potholes) as signatures
to provide both accurate and energy-efficiency localization
[18]. Other works have explored fingerprint-based techniques
to improve the energy efficiency of GPS. RAPS proposes a
rate adaptation of GPS sensing using hints gathered by inertial
sensors [5]. CAPS uses the daily trajectory of users, and
cell tower signals to improve over GSM based positioning
[6]. Inertial sensors are used for positioning in SmartLoc [8].
Map matching and dead reckoning algorithms are combined
in APT for localization [7]. Energy optimization of GPS has
also been explored by offloading the position calculation steps
to the cloud in LEAP [19]. WhereAmI uses a similar idea of
leveraging cloud resources to improve the energy efficiency.

VI. CONCLUSION

The ubiquitous presence of camera in smartphones mo-
tivates the use of images captured by users for positioning.
However, visual location recognition techniques are compute
intensive. In this work, we present WhereAmI, a lightweight
positioning technique that uses texts appearing together in
an outdoor image as a unique signature for localization. We

proposed a keyword matching algorithm that can handle partial
errors in the detected text by matching approximately to
texts from the database of business names. We have im-
plemented WhereAmI on Android smartphones. Compared
to GPS, WhereAmI has lower response time, less energy
consumption, and better position accuracy in urban areas. But
it requires higher amount of user involvement than in GPS.

ACKNOWLEDGEMENT

This research was supported by the MSIP(Ministry of
Science, ICT and Future Planning), Korea, under the ”ICT
Consilience Creative Program” (IITP-2015-R0346-15-1007)
supervised by the IITP(Institute for Information and Commu-
nications Technology Promotion)”

REFERENCES

[1] M. B. Kjærgaard, J. Langdal, T. Godsk, and T. Toftkjær, “Entracked:
Energy-efficient robust position tracking for mobile devices,” in Pro-
ceedings of the 7th International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys, 2009.

[2] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency
of location sensing on smartphones,” in Proceedings of the 8th Interna-
tional Conference on Mobile Systems, Applications, and Services, ser.
MobiSys, 2010.

[3] Y. Jie, V. Alexander, L. Hongbo, C. Yingying, and G. Marco, “Accuracy
characterization of cell tower localization,” in Proceedings of the
12th ACM International Conference on Ubiquitous Computing, ser.
Ubicomp, 2010.

[4] M. Azizyan, I. Constandache, and R. Roy Choudhury, “Surroundsense:
Mobile phone localization via ambience fingerprinting,” in Proceedings
of the 15th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom, 2009.

[5] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adpative gps-
based positioning for smartphones,” in MobiSys, 2010.

[6] J. Paek, K.-H. Kim, J. P. Singh, and R. Govindan, “Energy-efficient
positioning for smartphones using cell-id sequence matching,” in
Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys, 2011.

[7] X. Zhu, Q. Li, and G. Chen, “Apt: Accurate outdoor pedestrian tracking
with smartphones.” in INFOCOM, 2013.

[8] C. Bo, X.-Y. Li, T. Jung, X. Mao, Y. Tao, and L. Yao, “Smartloc: Push
the limit of the inertial sensor based metropolitan localization using
smartphone,” in Mobicom, 2013.

[9] R. LiKamWa, E. Reyes, and L. Zhong, “Poster: Retrofitting computer
vision libraries for concurrent support on mobile devices,” in Proceed-
ings of the 20th Annual International Conference on Mobile Computing
and Networking, ser. MobiCom ’14, 2014.

[10] K. Jung, K. I. Kim, and A. K. Jain, “Text information extraction in
images and video: a survey,” in Pattern Recognition 37(5): 977-997,
2004.

[11] M. Elhamshary and M. Youssef, “Checkinside: A fine-grained indoor
location-based social network,” in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
ser. UbiComp ’14. New York, NY, USA: ACM, 2014, pp. 607–618.

[12] A. Shahab, F. Shafait, and A. Dengel, “Icdar 2011 robust reading
competition challenge 2: Reading text in scene images,” in International
Journal of Document Analysis and Recognition, 2011.

[13] B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes
with stroke width transform,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2010.

[14] “Text detection on nokia n900 using stroke width transform,”
https://sites.google.com/site/roboticssaurav/strokewidthnokia.

[15] G. Schroth, R. Huitl, D. Chen, M. Abu-Alqumsan, A. Al-Nuaimi, and
E. Steinbach, “Mobile visual location recognition,” Signal Processing
Magazine, IEEE, vol. 28, no. 4, pp. 77–89, July 2011.

[16] V. Honkavirta, T. Perl, S. Ali-Lytty, and R. Pich, “A comparative survey
of wlan location fingerprinting methods.” in WPNC, 2009.

[17] K.-H. Yap, T. Chen, Z. Li, and K. Wu, “A comparative study of
mobile-based landmark recognition techniques,” Intelligent Systems,
IEEE, vol. 25, no. 1, pp. 48–57, Jan 2010.

[18] A. Heba and Y. Moustafa, “Dejavu: An accurate energy-efficient out-
door localization system,” in ACM SIGSPATIAL GIS, 2013.

[19] H. S. Ramos, T. Zhang, J. Liu, N. B. Priyantha, and A. Kansal, “Leap:
a low energy assisted gps for trajectory-based services.” in Ubicomp,
2011.

