
Using GPUs to Crack Android Pattern-based Passwords

Jaewoo Pi Pradipta De Klaus Mueller
Dept. of Computer Science

SUNY Korea
Email: {jwpi, pradipta.de, mueller}@sunykorea.ac.kr

Abstract—We investigate the strength of patterns as secret
signatures in Android’s pattern based authentication mechanism.
Parallelism of GPU is exploited to exhaustively search for the
secret pattern. Typically, searching for a pattern, composed of a
number of nodes and edges, requires an exhaustive search for
the pattern. In this work, we show that the use of GPU can
speed up the graph search, hence the pattern password, through
parallelization. Preliminary results on cracking the Android
pattern based passwords shows that the technique can be used
as the basis to implement a tool that can check the strength of a
pattern based password and thereby recommend strong patterns
to the user.

I. INTRODUCTION

Android operating system for mobile phones has intro-
duced pattern based authentication mechanism. The pattern
consists of an arbitrary number of strokes or lines between nine
dots on the screen. Specifically the Android pattern locking
scheme provides an onscreen 3x3 grid of contact points. A
pattern is an ordered list of points, without violating three
rules: (i) the pattern must contain at least 4 points, thereby
any pattern must have at least 3 edges, (ii) a contact point can
be used only once, and (iii) intermediate points are selected
automatically as a contact point, unless it is already part of an
edge in the pattern. Due to these restrictions, total number of
allowed patterns on an Android device is 389,112 [1].

Despite its advantages, patterns are easier to hack. Known
techniques include shoulder surfing, where the password can be
easily remembered by the hacker [2]. Smudge attack is another
known technique to steal the pattern password, where the finger
traces left on the screen can be used to detect the password [1].
A recent work shows that picture gesture authentication(PGA)
scheme used on Microsoft 8 surface devices are hackable by
guessing the user choices [3]. Are patterns easy to guess or
discover? For alphanumeric passwords, there are tools which
recommend if the combination of characters is vulnerable
to cracking, either by brute force attack or dictionary based
attacks [4]. We investigate whether similar attack to crack the
pattern based password on Android devices is feasible or not.

Password patterns are graphs with a vertex count between 4
to 9, and maximum 8 edges. A brute force search is equivalent
to looking for all possible patterns. Whereas searching for
commonly used patterns and converging on a match faster
is analogous to dictionary based attack. We focus on the
brute force search problem. However, instead of using CPU
to explore for the pattern, we recognize that the search can
be executed in parallel using GPUs, where each thread of
execution traverses a different search path. In the following
sections, we present our technique for parallelizing the graph
search function on General Purpose GPUs to crack the Android
pattern password, as well as, present some preliminary results
showing the vulnerability of the pattern based password.

Fig. 1. The Android pattern lock grid and the corresponding adjacency matrix
denoting the connectivity in patterns

II. SOLUTION OVERVIEW

In graph theory, finding a path that visits each vertex
exactly once is called Hamiltonian Path Problem. The problem
is NP-complete, and the execution slows down exponentially as
the number of vertices and edges increases. Traditional method
uses divide and conquer approach, which recursively visits all
the nodes to find a path. GPUs can run tens of thousands
of threads concurrently, however, many GPUs do not support
recursive call within each thread in the GPU due to deficiency
of kernel stack. Latest GPU release, like Kepler K20, supports
recursion facilitated by dynamic branching.

The GPU implementation is optimized progressively to
crack the pattern faster. The algorithm recursively traverses
neighbor nodes in column order of the adjacency matrix, as
shown in Fig. 1. In this matrix each row stands for a node, and
each column is connected neighbor, with a maximum possible
of up to 8 neighbors. For example, starting from node 0 (left-
top) it visits node 1, which is first index of node 0. Then when
recursive traversal from 0 → 1 is over, it begins 0 → 3, 0 → 4,
and so on. The algorithm prevents revisiting any node in a path
by using a simple bit mask data structure.

A. Naive GPU algorithm

The naive approach spawns multiple threads and ensures
that each thread explores a different path in the graph. A unique
thread id indexes the path traversed. Use octal representation
for thread id allows to use each digit as a node in the pattern.
For example, a thread whose tid = 100 is converted to 144 (in
octal). 144 denotes that traversal path is 1st neighbor of starting
node, followed by the 4th neighbor of the next node, and the
4th neighbor of the next. In the worst case, a node can have
eight neighbors and a path connects up to nine nodes. Thus,
without removing any loop or duplicate path it requires 88 =
16, 777, 216 different paths for each starting node. Threads
per block is set to 1024 to reduce number of blocks used, still
requiring 16K blocks.



Algorithm 1 CPU PROCEDURE

1: Calculate the number of threads
2: Allocate CPU and GPU Memory with the number of threads
3: for startNode = 0→ 8 do
4: /* The following function executes on the GPU */
5: FindPathKernel(*paths, *adjacencyMatrix, startNode)
6: end for

Algorithm 2 FINDPATHKERNEL()
Require: *paths, *adjacencyMatrix, startNode

1: /* This procedure runs on GPU */
2: threadID = blockIdx.x ∗ blockDim.x+ threadIdx.x
3: pathOct = threadID
4: while pathOct > 0 do
5: edgeIndex = pathOCT&0b0111
6: nextNode = adjacencyMatrix[nextNode][edgeIndex]
7: if nextNode refers out of index then
8: break;
9: end if

10: if duplicateCheck[nextNode] == true then
11: break;
12: end if
13: paths = AddNodeToPath(threadID)
14: duplicateCheck[nextNode] = true
15: pathOct = pathOct >> 3
16: end while

B. GPU Optimization: Thread Reduction

The large number of threads as well as global memory
access becomes a key bottleneck. Observe that most threads,
except those traversing 9 points, end early. Also, every node
has at least one neighbor. For optimization, now the threads
only travel one of 7 different neighbors (indexed 1-7) from
a node, and threads completing early traverse the neighbor
with index 0 after recording their traversal result. Number
of total threads are reduced to 78 = 5, 764, 801 (34.5% of
the original) allowing better thread utilization. Also, only the
valid paths (ones with no loop in a path) are written to
memory. Although number of writes to the memory is reduced,
coalescing problem remains unsolved.

C. GPU Optimization: Version 3

Note that each thread has to refer to adjacency (neighbor)
matrix at least once and up to eight times. As the matrix does
not change while finding the path, it can be written once into
constant memory, which is faster than global memory, and
supports caching for faster access.

D. GPU Optimization: Version 4

For the indexing from thread ID to path, dec2oct() function
is used which converts decimal number into octal number. The
function uses division (/) and modular (%) operator leading to
slowdown. Replacing modular operation with logical operator
AND, and division by eight with 3 right shift operations gives
good speedup.

The algorithm for the GPU-based implementation of the
traversal is described in Algorithm 1 and Algorithm 2. The
procedure starts on the CPU and spawns threads to run on the
GPU, using the FindPathKernel function.

Version Time(ms) Speed-up(vs. CPU) Speed-up (GPU-Naive)
CPU 134 - -

GPU: Naive 646 x0.21 -
GPU: Thread reduction 100 x1.34 x6.46

GPU: v3 75 x1.79 x8.61
GPU: v4 39 x3.44 x16.56

TABLE I. SPEEDUP IN IDENTIFYING PATTERNS USING GPU

III. PRELIMINARY RESULTS

The preliminary results report the time to crack a pattern.
The system used for the experiment is Intel Xeon E5-2630
CPU with 16 GB RAM, and Nvidia Quadro 4000 GPU with
2GB of video memory which has 256 CUDA cores and CUDA
2.1 compute capability. The execution time does not include
memory allocation and copy from CPU memory to GPU or
vice versa. We show the speedup that GPU processing can
achieve over using CPU in Table I. Due to overhead of large
number of threads GPU:naive performs worse than execution
on CPU, but with further optimizations there is speedup up to
3 times.

Fig. 2(a) shows the number of threads used as the number
of contact points increase in a pattern, while the time taken is
shown in Fig. 2(b). Note that a pattern with 9 dots, which is
the largest pattern allowed on Android, can be cracked in less
than 200 ms.

(a) Increasing thread count (b) Increasing time to crack

Fig. 2. Performance evaluation of pattern based password cracking: With
increasing number of contact points in a pattern the threads and the time to
crack increases.

ACKNOWLEDGEMENT

This research was supported by the MSIP (Ministry of
Science, ICT and Future Planning), Korea, under the “IT
Consilience Creative Program” (NIPA-2013-H0203-13-1001)
supervised by the NIPA (National IT Industry Promotion
Agency).

REFERENCES

[1] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge
attacks on smartphone touch screens,” in Proceedings of the 4th USENIX
conference on Offensive technologies, ser. WOOT’10, 2010.

[2] N. H. Zakaria, D. Griffiths, S. Brostoff, and J. Yan, “Shoulder surfing
defence for recall-based graphical passwords,” in Proceedings of the
Seventh Symposium on Usable Privacy and Security, ser. SOUPS ’11,
2011.

[3] Z. Zhao, G.-J. Ahn, J.-J. Seo, and H. Hu, “On the security of picture
gesture authentication,” in Proceedings of the 22nd USENIX Security
Symposium, 2013.

[4] D. Apostal, K. Foerster, A. Chatterjee, and T. Desell, “Password recovery
using mpi and cuda,” in 2012 19th International Conference on High
Performance Computing, 2012.


