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Abstract—In Software-as-a-Service (SaaS) cloud delivery
model, a hosting center deploys a Virtual Machine (VM) image
template on a server on demand. Image templates are usually
maintained in a central repository. With geographically dispersed
hosting centers, time to transfer a large, often GigaByte sized,
template file from the repository faces high latency due to low
Internet bandwidth. An architecture that maintains a template
cache, collocated with the hosting centers, can reduce request
service latency. Since templates are large in size, caching complete
templates is prohibitive in terms of storage space. In order
to optimize cache space requirement, as well as, to reduce
transfers from the repository, we propose a differential template
caching technique, called DiffCache. A difference file or a patch
between two templates, that have common components, is small
in size. DiffCache computes an optimal selection of templates
and patches based on the frequency of requests for specific
templates. A template missing in the cache can be generated
if any cached template can be patched with a cached patch file,
thereby saving the transfer time from the repository at the cost of
relatively small patching time. We show that patch based caching
coupled with intelligent population of the cache can lead to a
90% improvement in service request latency when compared
with caching only template files.
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I. INTRODUCTION

A Virtual Appliance (VA) is a virtual machine image file

consisting of pre-configured operating system environment,

along with application(s) installed, configured and tested in the

environment. The use of VA as a basic unit of deployment in

cloud introduces a new challenge for cloud service providers.

VA image files are large, often tens of GigaBytes in size. When

a request for a VA template is received, the entire file must

be transferred to the hosting physical server for instantiation.

Since hosting centers are geographically dispersed, and image

repository may be centralized, therefore, accessing a repository

over the Internet to fetch a GigaByte sized file can degrade

server provisioning speed significantly. Currently, several ven-

dors, like IBM, Microsoft, Oracle are making their bundled

products available as Virtual Appliances, as found in Amazon

Machine Images [1]. Although all these images are hosted

centrally by Amazon, we envision a scenario where each ven-

dor can maintain its own globally addressable repository, and

a cloud hosting center maintains an index to the repository to

fetch the file when required. Fig. 1 presents this scenario where

Fig. 1. Cloud Delivery Location hosting the virtual servers are connected
to vendor repository sites over the Internet. Image Caching location can act
as intermediate storage areas, collocated with the hosting site, that can cache
frequently requested machine images.

different vendors maintain individual image repositories. A

delivery location contacts a repository to service a request.

However, this also poses the challenge of transferring large

machine image files over the Internet.

A well-known practice in content distribution networks is to

introduce a cache near the edge servers. Similarly, an Image
Cache can be collocated with the delivery center to store some

of the popularly requested templates. However, storing number

of templates can be prohibitive in terms of storage.

Image templates often have high degree of commonality

[2], [3]. In this work, we exploit the presence of this com-

monality among template files to generate difference files or

patches between two templates. A patch file can be applied

on another template to generate a new template. Instead of

caching large templates, we can cache patches and templates,

and effectively cater to a larger set of template requests by

paying a small cost of patching time, while saving the time to

fetch the complete template file from the repository. However,

selection of appropriate patches and templates, under given

template request history and available cache size, is essential

for realizing the benefit of the approach. We propose the

DiffCache algorithm, that computes a cache composition with

the objective of minimizing transfers from repository, thereby

reducing request service time.
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A. Motivation

We analyzed a request trace from IBM’s Research Compute

Cloud (RC2) [4] to assess the merits of our approach. The

trace, collected over 1 year, contains 10211 requests for VMs,

with 1088 distinct image templates. Only 26% of the requests

were serviced from 15 most frequently requested templates.

Thus to register a high cache hit rate, a large number of
templates must be cached, leading to high storage cost.

Although the number of image templates is quite high, and

grew exponentially over time, it was observed that there are

few original base templates from which they have evolved.

Usually a user picks an image template from a catalogue. For

example, a template with specific Linux version, then installs

additional software components in it, customizes it for a group,

and saves it in repository for either public or private use. Each
group can be thought of as a tree starting with a base template
and successive levels refining the level above it along different
directions, leading to small change in the parent machine
image file. In our trace, we found 138 distinct groups of image

templates. The average depth of the trees was 14.55, thereby

presenting an opportunity to generate small sized difference

files between image templates belonging to the same tree.

Average size of a template was 49 GB, whereas patches were

in MegaBytes (average size of patch was 350 MB).

We evaluated the efficacy of generating patches between

two similar templates. We created a Linux template, and

then installed two applications, viz. DB2 and WebSphere

Application Server (WAS), separately to generate two new

image templates. In another image template we installed both

the applications together. Thus we had 4 image templates, each

of which were approximately 7 GB in size. We computed the

patches between each pair of templates using an open source

block-based differencing tool, rdiff [5]. Table I shows the patch

sizes which are mostly MegaBytes (MB) in size, as opposed

to the original templates which were in GBs. The patch

generation process takes time in order of few minutes, and can

be performed offline. Table II shows the time to perform the

patching operation to recreate the target template back from

the basis template. Time to patch is typically proportional to
the size of the patch, and is of the order of few minutes, thereby
making it a promising way of caching image templates.

B. Contribution

The use of patches to reduce cache space requirement, as

well as, increase cache hit ratio has not been studied earlier.

We propose the DiffCache algorithm that makes an optimal

selection of patches and templates to be stored in the cache

that reduces the average request service time by minimizing

number of file transfers from repository to compute hosts.

The rest of the paper is organized as follows. In Section II,

we formulate the problem of composing cache with patches

and templates. In Section III, we present the DiffCache al-

gorithm. We evaluate our approach in Section IV. Section V

compares our approach with existing work. Finally, we con-

clude in Section VI.

Base Template Target Template Patch Size Patch Generation
(in MB) Time (in sec)

Linux DB2+Linux 576 798

Linux WAS+DB2+Linux 1218 1468

Linux WAS+Linux 713 902

DB2+Linux Linux 66 217

DB2+Linux WAS+DB2+Linux 700 1144

DB2+Linux WAS+Linux 705 1021

WAS+DB2+Linux Linux 62 210

WAS+DB2+Linux DB2+Linux 61 206

WAS+DB2+Linux WAS+Linux 46 180

WAS+Linux Linux 61 202

WAS+Linux DB2+Linux 566 899

WAS+Linux WAS+DB2+Linux 545 796

TABLE I
TABLE SHOWS PATCH GENERATED USING A BASE TEMPLATE AND A

TARGET TEMPLATE. THE TARGET TEMPLATE CAN BE RECREATED BY

APPLYING THE PATCH ON THE BASE TEMPLATE.

Base Template Target Template Patching Time
(in sec)

Linux DB2+Linux 240

Linux WAS+DB2+Linux 209

Linux WAS+Linux 177

DB2+Linux Linux 188

DB2+Linux WAS+DB2+Linux 269

DB2+Linux WAS+Linux 224

WAS+DB2+Linux Linux 176

WAS+DB2+Linux DB2+Linux 225

WAS+DB2+Linux WAS+Linux 193

WAS+Linux Linux 177

WAS+Linux DB2+Linux 213

WAS+Linux WAS+DB2+Linux 210

TABLE II
TABLE SHOWS THE TIME TO REGENERATE A TARGET TEMPLATE FROM A

BASE TEMPLATE BY APPLYING APPROPRIATE PATCH. IN COMPARISON,
ANY TARGET TEMPLATE, WHICH ARE APPROXIMATELY 7GB IN SIZE, WILL

TAKE 95 MINS TO FETCH FROM REPOSITORY OVER A 10 MBPS WAN
CONNECTION.

II. PROBLEM DESCRIPTION

In this section, we illustrate the problem of caching tem-

plates and patches at the hosting location. In this work, we

assume that the total cache space is distributed across all the

compute hosts. Finally, we present the problem as a linear

optimization problem.

A. Problem Illustration

The template and patches to cache are computed at periodic

intervals. The procedure uses the request arrival history for

the templates to compute relative importance of each template

in future. Different mechanisms, like most-popular templates,

or most-recently-used templates, can be used to generate an

ordering of the templates [6]

Given a set of templates ordered by likelihood of being

requested, I1, . . . , In, and a fixed cache space, one can start

caching the most important templates, starting from I1, till

the cache space is completely utilized. Let us assume that we

dedicate half of the cache space to store templates, and the

remaining half to store patches. The caching will then begin by

first storing templates from the ordered list, say I1, I2, I3, I4.

Next most important template is I5. If I5 can be generated
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by patching any of I1 to I4, then the corresponding patch is

selected for caching. By storing a patch, much smaller in size

than the template I5, we save cache space. Similarly, we can

store the patches for the other templates, till the cache space

runs out. For a given cache space, this method will be able

to effectively service requests for more template types, than it

can if only templates are stored. Additional cost is in terms

of patching, which is negligible compared to fetching time of

complete template from the repository.

However, in this naive scheme, we blindly apportion the

cache space equally for template and patches. If we design

the utility function for caching carefully, then it is possible

to make a better selection of templates and patches, that will

maximize the cache hits, thereby minimizing the service time

per request. We now present the optimization formulation.

B. Problem Formulation

One of the primary notions used in the formulation is

that an image template requested at a node can be generated

using another template present on a different node, and a

patch on another node. We can represent this notion as,

Ij@H1 := Ii@H2 ⊗ Patchij@H3, where Template Ij is

requested at host H1, and is generated using Template Ii
fetched from host H2, and patch Patchij retrieved from host

H3. In case, the necessary files are not cached, the repository

is contacted for retrieving the appropriate files.

Let there be N different types of templates that can be re-

quested, and K is the number of hosts. Of these hosts, index 0
is used to represent the repository host, and (1, . . . ,K) denotes

the hosts in the cloud hosting center. We use the indices i and

j to indicate Templates, and it varies from (1, . . . , N). Indices

p, q denotes the index of the hosts hosting the base template

and patch respectively, and vary from (0, . . . ,K). r is also

used as host index to denote the host where a new template

is requested, and therefore, it varies from (1, . . . ,K). Other

notations used are described in Table III.

Our specific problem is to come up with a set of base

templates and patches, and their placement on the available

hosts. Multiple constraints must be satisfied in order to define

the problem precisely.

Unique-Solution Constraint: For a request for a template

at a host, multiple ways are there to make the template

available. Of these there is exactly one way to ensure the

minimum cost. We use a decision variable, Sijpqr, to indicate

the method of constructing a template at a specific host. The

constraint on the decision variable, which we term as the

unique-solution constraint, can be expressed as,
∑

i

∑

p

∑

q

Sijpqr = 1, ∀j, r (1)

Thus we restrict the number of solutions (that is number of

1’s in Sijpqr) for a template Ij requested at host Hr to be 1.

Usage Constraint: Note that in order to generate a template

Ij at Hr, we can use the template Ii at Hq and patchij at

Hp. If there are several templates in the setup, which uses

Ii from Hq and patchij from Hp, then the usage count of

Notation Arity Explanation
Ii i ∈ {1 . . . N} Denotes the ith image

template
sizeij i ∈ {1 . . . N},

j ∈ {1 . . . N}
Denotes the size of the
patch to construct Ij
from Ii

sizei i ∈ {1 . . . N} Denotes the size of
template Ii

Hk k ∈ {1 . . .K} Denotes kth host in the
cloud hosting center

Ck k ∈ {1 . . .K} Denotes space available
for caching on kth host

fjr j ∈ {1 . . . N},
r ∈ {1 . . .K}

The request arrival rate
for template Ij at node
Hr

Sijpqr i ∈ {1 . . . N},
j ∈ {1 . . . N},
p ∈ {0 . . .K},
q ∈ {0 . . .K},
r ∈ {1 . . .K}

This is a decision
variable, which when
set to 1 implies
that Ij@Hr :=
Ii@Hq ⊗Patchij@Hp

TABLE III
TABLE SHOWS DIFFERENT NOTATIONS USED IN THE PROBLEM

FORMULATION.

these entities must be accounted for such that they are not

purged mistakenly when there are active users of them. Our

next constraint encodes the idea of usage count by accounting

for the usage of a template and a patch when a lookup decision

is finalized. We call this constraint Usage constraint, and is

expressed as,

Siiqqq = �
∑

j

∑
p

∑
r Sijpqr

N.(K + 1).K
�, ∀i, q (2)

patchijp = �
∑

q

∑
r Sijpqr

(K + 1).K
�, ∀i, j, p (3)

Note that, Siiqqq denotes that Template Ii is on Hq; patchijp

denotes that patch to generate Template j from Template i is

on Hp.

The left-hand side of Eqn. 2 denotes whether the template

Ii should be placed on host Hq . Now the template will be

cached at host Hq (value of variable Siiqqq will be 1), if it

is marked to be used at least once. The three summations on

the right-hand side determines if template Ii at host Hq is

used for any request for template Ij at host Hr. Since the

value of the variable Siiqqq should be either 1 or 0, we divide

the total count by maximum number of times a cached entity

can be used, which is given by the product of number of

hosts and number of templates. Thus the expression is bound

within 0 and 1. We take ceiling of this expression to satisfy

the integrality constraint of Siiqqq . Eqn. 3 can be understood

similarly, where patchijp must be an integer in [0,1].

Capacity Constraint: Capacity constraint ensures that the

available space for cache on each node is not exceeded after

placing the templates and patches. There can be multiple

templates and patches cached on each node, and this constraint

ensures that the total space used is less than the cache space.
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Capacity constraint is expressed as,
∑

j

Sjjrrr.sizej +
∑

i

∑

j

patchijr.sizeij ≤ Cr, ∀r (4)

Eqn. 4 finds the cache usage at host Hr. The space is

consumed by base template files and patch files. As we saw

in Eqn. 2 and Eqn. 3, we get whether base template Ij and

patchijr are getting used by looking at Sjjrrr and patchijr

respectively. If they are getting used, it implies that they are

cached at host Hr. We sum up the sizes of all templates and

patches on host Hr to compute the total space consumed on

Hr and this should be less than Hr’s capacity for each Hr.
Cost Function: The cost of servicing a request for a

template, Ij on a host, Hr, is dependent on the availability

of the templates as per the placements made in the previous

round of cache computation. There are several ways to register

a cache hit: (i) Template Ij is available on Hr; (ii) Template Ij
is available on a peer node; (iii) Template Ij can be generated

using Ii and patchij , and Ii and patchij are available on Hr

or any of its peer nodes. If all these cases fail, then one may

need to either fetch the patchij from the repository (when the

base template Ii is available in one of the peer nodes), or may

need to fetch the template Ij from the repository.
Based on how a request will be serviced, given a cache com-

position, one can compute the latency for servicing a request,

or the total bytes transferred. Minimization of either of these

two costs can be achieved by the same cache composition.

When a request is handled locally on a server, the total time

spent is in copying the image file from the local cache, in

addition to patching, if required. Let us call this transfer rate

LocalTx. If a peer server is contacted, then the transfer is over

the local area network, and we call the transfer rate PeerTx.

When repository is involved, then the transfer rate is termed

RepoTx. Note that LocalTx > PeerTx >> RepoTx. In order to

compute the latency of servicing a request, we need the size of

the templates and patches used, and the transfer rates. If we are

interested in the bytes transferred, only the size is sufficient.

We use a cost matrix, γ which stores the value of servicing a

request for a template at a host. As we described earlier, the

decision variable, Sijpqr, denotes a specific combination to

construct a requested template at a node. Therefore, given the

cost of the construction, stored in the γ matrix, we can easily

compute the total cost for servicing all the requests. We also

assume that when request arrival history is available, we can

also compute the request load for each template on a node, as

denoted by fjr. Finally, the objective function minimizes the

total cost of servicing all the predicted requests,

min

N∑

j=1

K∑

r=1

N∑

i=0

K∑

p=0

K∑

q=0

fjr.Sijpqr.γijpqr (5)

Eqn. 5 finds the total cost of servicing each request for

Ij at host Hr. This computes an aggregate cost since we

take frequency of templates being requested on a host, fjr,

in consideration. The variable Sijpqr encodes the solution to

be used to service a request for template Ij at host Hr and

variable γijprq gives the cost corresponding to a solution.

Thus, we have a Integer Linear Program to solve to get

the optimal placement of the templates and the patches to

minimize the total cost of servicing requests.

III. DIFFCACHE ALGORITHM

In this section, we introduce the algorithm for pre-filling the

cache with (complete) base templates, and patches. We first

show that the specific problem is an NP-hard problem. Then

we present a heuristic for solving the problem.

A. Problem Complexity

Assume that the frequency of requests for each template

type on every host is identical. With this assumption, let us

minimize the cost function for a given collection of base

templates and patches. Let us further assume that there is

only 1 host and N template types. The cache space on the

available node is C. Now, the problem boils down to packing

the maximum number of base templates and patches in the

available space of size C. One can observe that this is a

specific case of bin-packing problem, or more precisely is the

0-1 Knapsack problem. Bin-packing problem is known to be a

NP-hard problem. Thus a special case of our problem, where

the frequency is identical, and number of host is set to 1 with

fixed space, boils down to a bin-packing problem. Therefore,

the generalized version of the cache computation problem is

also NP-hard.

B. DiffCache

We present a heuristic to compute the best composition

of the cache, given multiple input parameters, like frequency

of arrival of requests for each template on a node, cost of

servicing a request on a node where the sizes of templates

and patches are known.

The algorithm computes the placement over multiple

rounds. In each round, the requirement is to select a template
on a host, plus patches along with their hosts. Each round

runs in two steps. In the first step, a template is placed

on a node, while satisfying capacity constraint (Line 16).

Given this placement, we search for the patches across all

nodes which will minimize the total cost (PickPatches
at Line 25). We have to ensure that all combination of

template and node is considered before finalizing a round

(PickImageAndPatches at Line 12). At each round, a new

template is picked and the steps are repeated till the cache

space is exhausted. The complete algorithm is presented in

Algorithm 1.

At the end of each round, we have to update the following

data structures (UpdateDataStructures)

1) LookUpTable: This is a hashtable which returns the

templates and patch, along with the hosts, which could

be the repository, from which to fetch the respective

items. The key to the hashtable is the template id and the

host on which it is required. At each round, when new

templates and patches are added to cache, the lookup

can undergo a change. Use of the hashtable ensures that

there is exactly one solution to construct a template on
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Algorithm 1 Algorithm to compute cache composition, com-

prising of templates and patches to be kept at each node
Require: Init Request-Arrival-Frequency-Table from history
Require: Init CostMatrix (γ)
Require: Init Template and Patch sizes,
Require: Init Per-Node-Cache-Space (CS)
Require: Init SolutionLookUpTable(SLT) /* a hashtable that returns how to generate

requested template at a node */

1: procedure DiffCache
2: COST := cost of serving all requests from repository
3: spaceAvailable = true
4: while spaceAvailable == true do
5: /* PickImageAndPatches returns updated data structures */
6: PickImageAndPatches
7: if new template or patch added then
8: /* update COST, CS and SLT based on the return values */
9: UpdateDataStructures /* Global Data Structures are updated */

10: end if
11: end while

12: procedure PickImageAndPatches
13: benefit = 0
14: for all Template i do
15: for all Node k do
16: if (Ii@Hk == false) && (CacheSpace on Hk ≥ sizei) then
17: newBenefit = PickPatches(i, k)
18: if (newBenefit > benefit) then
19: UpdateDataStructures /* Update Local Data Structures */
20: end if
21: end if
22: end for
23: end for
24: return LocallyUpdatedDataStructures

/* PickPatches determines which patches to pick, given that Ii on Hk */
25: procedure PickPatches(inti, intk)
26: newCost = total cost after placing Ii on Hk

27: adjust space on Hk due to Ii
28: adjust RefCnt for Ii@Hk

29: store new lookupEntry for Ii@Hk

30: for all Nodes q, q �= 0, q �= k do
31: for all Templates j, j �= i do
32: bestCostReduction = 0
33: for all Nodes r = 0 → K do
34: /* the costs are looked up from the costMatrix */
35: costReduction = newCost - oldCost;
36: if (costReduction > bestCostReduction) then
37: newSol = save current patch placement
38: end if
39: end for
40: if (newSol is not empty) then
41: UpdateDataStructures /* Update Local Data Structures */
42: end if
43: end for
44: end for
45: return LocallyUpdatedDataStructures

a host. In a real-world deployment with large number of

templates, one must use a database to store the solutions

to speed up the search.

2) Usage-Count: For each template on a host, and a patch

on a host, we maintain the usage count as the lookup

entries are updated. This is essential to ensure that a

patch or a template is not removed from the cache

assuming it is not in use.

3) Available-Space: After each round, the available space

on each node for caching is also updated based on the

new placements.

IV. EVALUATION

In this section, we evaluate the benefits of patch based

caching in cloud delivery environments using DiffCache as the

cache filling algorithm. The techniques are implemented on a

small testbed to demonstrate the feasibility of the approach

under typical network conditions.

A. Comparison of Caching using DiffCache

1) Parameters and Initialization: The evaluation is depen-

dent on several parameter values, viz. cache size, average

size of template and patch files, workload distribution. In

the experiments, cache size is varied from 10 GB to 150

GB per host, with the default value used being 45 GB per

host. Number of hosts is varied from 3 to 10, and number of

templates from 5 to 50. Unless otherwise stated, default value

for number of templates is 10, and number of hosts is 3.

Templates and Patch File Initialization: Template sizes

range from 40 GB to 50 GB, and are chosen randomly from

a uniform distribution. Given two templates, Ii and Ij , sizes

of patch files, patchij and patchji, depend on the relative

sizes of Ii and Ij . If Ii > Ij , then it implies that template

Ij has been built over template Ii by installing additional

components. patchij is a difference in size of the two template

files. On the other hand, we set patchji to a small size of 10

MB since the patch file needs to maintain only information

about sections to be deleted from template Ij to generate Ii.
This logic is based on experimental data from Table I.

Initializing Cost Matrix(γ): Cost of making a template Ij
available at Hr is dependent on template Ii, hosted at Hq ,

and a patch, patchij , hosted at Hp. Given the values of the

five-tuple {i, j, p, q, r}, we compute a cost value for making

a template available at a node. For our experiments, cost is

in terms of time to service a request. Cost is the sum of time
to fetch individual components, viz. template and patch file,
in addition to the time to perform patching, if required. We

set the bandwidth values for network links between repository

to hosting center to be 10 Mbps, within the hosting center to

be 200 Mbps, and patching and copying time within a host

translates to a bandwidth of 400 Mbps. The patching time is

based on a linear function whose parameters are derived from

the experiment data in Table I. Given the sizes of templates

and patches, and the bandwidths, we can compute the time

to generate a template at a node for different scenarios, when

a template and/or a patch is fetched from repository, or peer

node, or copied from local cache on the host.

Workload Generation: The workload for the simulation

experiments are generated as a random sequence of requests

for templates. These requests are then dispatched by a load

balancer to the available nodes.

2) Evaluation Results: In our evaluation, we report the

average service time to serve a request. DiffCache algorithm

makes the selection of entities to be placed in cache for both

scenarios, when patches and templates are cached, as well as,

when only templates are cached.

Fig. 2 shows the benefit of patch-based caching against non-

patch based approach. When patches are not cached, the cost

reduces in steps, where each step corresponds to the time

when there is sufficient space to cache one more template.

But when patches are available for caching, the cost reduces
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Fig. 2. A comparison of average service time for two caching scenarios. In
without patch caching, the cache stores complete templates, whereas
in with patch, the cache stores templates, and patches for generating new
templates by patching in-cache templates.

significantly since along with base template, few patches are

cached on hosts, thus serving more templates from cache.

When the cache size is below 50 GB per node, both approaches

perform identically since there is inadequate space in any host

to cache even a single template, therefore, caching any patch

is useless. At this point, all templates are accessed directly

from repository leading to a high service time as large files

are fetched over slow links of bandwidth 10 Mbps.
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Fig. 3. Comparison of caching scenario with and without storing patches,
when the number of templates is varied. As the number of templates increases,
patch based caching can scale more effectively than the caching without
patches.

We test the scalability of caching with patches with respect

to increasing number of templates, as shown in Fig. 3. With

fixed cache size, when template count is increased, DiffCache

can cache patches to effectively increase the number of cached
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Fig. 4. Comparison of caching scenario with and without storing patches,
when the number of hosts is varied. As the number of hosts increase,
available caching space increases, thereby helping the “no patch” scenario.
With patches, cache utilization is better, which leads to low average service
time.

templates. However, as the template count increases, the cache

space is insufficient to store all patches. Therefore, repository

is accessed, leading to an increase in average service time.

When the number of nodes is varied, DiffCache shows a

consistently good performance, whereas the non-patch based

approach matches DiffCache algorithm as the node count

equals the number of templates in the system, as shown in

Fig. 4. As the number of hosts increases, total cache space

also increases. Thus even when caching without patch, there is

enough space to store all the templates. However, the benefits

of caching with patches is evident when the number of hosts

is less, where despite having smaller cache space, the average

service time is reduced by caching patches to service requests.

B. Evaluation on Testbed

We present the testbed setup for comparing the caching

approaches on a prototype testbed implementation.
1) Testbed Setup: The testbed comprises of 5 hosts: 3

compute hosts, 1 host used as the provisioning engine for

dispatching requests, and 1 host as the image repository. Com-

pute hosts are IBM blade servers on the same chassis. Image

repository is collocated with the compute hosts, therefore, we

programmatically throttle the bandwidth between repository

and the compute hosts to stay around 20 Mbps, thereby

mimicking a remote host connected over Internet.

On each compute host, we allocate a fixed space on local

disk for caching. There are two ways to service a request

on a node. If the required template and patch are on peer

hosts, it is first copied to a compute host, and then patching

is performed to service the request. We term it as Fetch-
n-Patch mode. However, if all the cache directories across

peers are mounted on each other, then it is possible to further

improve the performance of caching. In this case, the files

are not copied to the compute host from a peer, instead the
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patching command is issued on the files residing on mounted

directories. If NFS cache is turned on, this technique can

benefit from NFS caching. We term it as On-the-Fly Patch
mode.

There are 5 VM templates, with Linux as base OS, and addi-

tional softwares installed on it to create templates with some

common components. The base templates are of size 7GB,

while the patch sizes vary from 36MB to 1.6GB. Requests

for the 5 templates are generated from a uniform random

distribution, and dispatched round-robin to the compute hosts.

DiffCache algorithm uses the same distribution, but with a

different seed, which it assumes to be the request history for

evaluating future request arrivals.

In the experiment, we compare caching with-patches and

without-patches, where DiffCache selects the cached elements

in both cases. The requests are triggered while the cache is

being updated with files from the repository. Therefore, first

few requests cannot be serviced from cache, and fetches the

templates from repository. Subsequently, a request uses the

cache lookup table to fetch required files, templates and/or

patches, from either a peer or repository, as defined in the

lookup table. In production setting, the DiffCache computation

will be performed during periods when the workload is light,

thereby, causing minimal impact to the service. Unless the

workload varies fast, the cache composition will remain stable.

Once the necessary files are received on the compute host,

patching is performed, if required, to generate the requested

template. A VM can be instantiated from the template file

generated.

2) Testbed Results: Fig. 5 shows the time taken to service

same request stream for three cases: Fetch-n-Patch mode, On-

the-Fly patch mode, and without patch caching mode. Request

1, 2, and 3 were dispatched while the cache was being filled.

Hence these 3 requests are serviced from the repository, taking

around 60 minutes to complete. Note that request 1 took

longer to complete for with-patch scenarios. As the cache

update was in progress, additional traffic was introduced in the

network creating contention. For with-patch case, the number

of flows during cache update was 11 (2 templates and 9

patches were being fetched), leading to multiple flows starting

simultaneously. For no-patch case, only 2 template files were

fetched for caching.

The remaining requests were serviced based on the lookup

decision prepared by DiffCache. In no-patch scenario, only

two templates could be cached, leading to several requests

being serviced from repository. In with-patch case, we are able

to service almost all the requests from the distributed cache.

For request id 4, service time with patches is longer compared

to no-patch case, since the lookup decision decided to pull the

template and patch from peer nodes; whereas, in no-patch case,

the template was resident in the local cache, and required only

a local copy. On-the-Fly patching consistently performs better

than Fetch-n-Patch since we are able to avoid sequential copy

of the files into the compute host from peers. Average service
time for no-patch, Fetch-n-Patch, and On-the-Fly patch cases
are 46.9 mins, 5.02 mins and 3.23 mins respectively when
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Fig. 5. Comparison of caching with patches and aching without patches on
testbed, where DiffCache technique is used to select the cached elements.
Mean service time is computed for requests that arrived after cache is
completely filled up.

all requests after cache update completion are considered
(requests 4 to 15). Overall improvement in servicing a request
when patches are used in caching is over 90% more than the
case when patches are not used.

We also measure the time for initializing the cache after

DiffCache computes the cache composition. Cache space on

the 3 hosts were 5GB, 8GB and 8GB. The cache was empty

in the beginning. Time taken to fill the cache is around 1

hr, which is dependent on the network bandwidth between

the repository and hosts, as well as the size of the files. In

practice, cache fill may take less time since some cached files

may be reused. The benefit of with-patch case is clear when

the utilized cache space is observed. Fig. 6 shows that with

no-patch, we are not able to utilize the cache on host-1 due to

fragmentation, however, with-patch scenario can utilize more

of the available cache space since it stores patch files in cache

of host-1.
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Fig. 6. Comparison of cache space utilization and initialization time. In each
block, left-hand bar represents caching without patch, and the right-hand bar
denotes caching with-patch.

V. RELATED WORK

The problem of reducing latency while delivering content

has been addressed in several contexts, like Web Caching [7],
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Content Distribution Networks [8]. Although our work hinges

on the idea of caching explored in these domains, the key

problem we solve relates to composing the cache content while

minimizing network usage cost. The low network transfer

overhead translates to reduced latency while serving a request.

In surveying the prior art, first we focus on techniques that

attempt to mitigate the high network transfer time while deliv-

ering large template files in cloud setup. We also characterize

the work related to efficient image repository maintenance and

explain how it complements our work.

BitTorrent like systems has been one of the most popular

techniques to download large files by opening simultaneous

connections to retrieve parts of a file. Similar technique is

employed by Chen et al. in image file distribution [9]. They

describe a virtual machine image file as a BitTorrent seed file,

and use upload capacity of peer hosts in a delivery center

to accelerate the image file transfer. Although we use the

bandwidth between the peer nodes, we avoid transfer of the

complete files, and can achieve high effective transfer rate by

only transferring a small patch file. A similar approach of

leveraging peer-to-peer file transfer is also applied in [10]. In

Iceberg, a chunk-based content-aware file partitioning is used

to improve image distribution. Our technique is applicable on

any file type without maintaining additional information.

Optimizing storage requirement for image repository has

been addressed by partitioning large image files into smaller

chunks, and maintaining a deduplicated chunk store. While

some systems use an unstructured block-based representation

[11], [12], others, like Mirage [13], maintain an indexed chunk

store. The chunk based image repository can easily support a

“delta deployment” strategy during image provisioning, where

deltas between images can be used to speed up generation

of new images. In this work, we have solved the problem of

choosing appropriate deltas and images, and show the benefits

of delta deployment in provisioning virtual machine instances

in cloud.

VI. CONCLUSION

Machine image templates that are used to deploy Virtual

Appliances on cloud infrastructure are large in size, often

ranging in tens of GigaBytes. Fetching image templates stored

in centralized repositories incurs long network delay due to

slow Internet bandwidth, thereby adversely affecting request

service time. Replicating repositories across all hosting centers

is prohibitive in terms of storage cost. A common solution to

mitigate such latency issue is to maintain a cache collocated

with the hosting center.

Image templates show high degree of commonality. This

feature has been exploited in optimizing storage requirement

of image repository by storing only common blocks across

templates. We take this approach a step further to exploit

commonality among templates while caching. A patch file

between two similar templates is small in size. If the template

and the patch file is in cache, then a new template can be

generated by using the in-cache template and patch. This can

not only get the request serviced from cache, it also saves in

terms of cache space requirement. Since patch files are small in

size, one can effectively cache more templates by just storing a

few templates and multiple patches. Given the request pattern

for templates, and the available cache space, it is possible to

compute the optimal cache composition that will minimize

the number of requests required to contact the repository for

servicing. We propose DiffCache algorithm that populates the

cache with patch and template files that minimizes the network

traffic, and leads to significant gain in reducing service time

when compared to standard caching technique of storing

template files. Our simulation experiments show significant

gains when using patch based caching approach. Patch-based

caching using DiffCache shows over 90% improvement when

compared to Diffcache generated selection for template only

caching in our prototype testbed implementation.
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