
Facade : Collaborative Creation, Peer Review, and Execution of IT Tickets

IBM Research : Pradipta De, Manish Gupta, Venkateswara R. Madduri, Jai K. Singh

Abstract—Cost pressures on IT Service Delivery along with
greater employee churn, and lack of skilled labor and training
problems have resulted in lower customer satisfaction. As of
today a typical system administrator, who is tasked with
executing a server incident or change ticket follows a very ad hoc
process of performing the task. This ad hoc approach often leads
to poor quality of execution resulting in service level failures such
as incorrect, incomplete, or not fully thought through work
instructions, lack of a backout plan, task performed without
authorization, instructions if provided were not followed,
executing the task at a time when it is not supposed to be done, or
executing the task for a wrong server, or skipping a command.
Some key factors behind all these issues are: (1) diversity of tools
that a user is expected to be familiar with, (2) lack of a standard
in representing the work-instructions, and (3) the current
practice of creating and executing work-instructions which are
open to misinterpretation during execution. In this paper, we
describe the design of a tool that alleviates the above issues. The
tool has been implemented and used in 3 pilots involving large
service delivery projects. We present usage experience of this tool
from the pilots conducted to validate our design.

Keywords-Service Management; Service Planning and
Execution; Service Delivery Platforms and Architectures;
Change & Incident Management;

I. INTRODUCTION
ITIL [1] lays down the best practices for IT processes

concerning incident, problem, and change management, yet it
does not dwell on the lifecycle of how a system admin creates,
harvests, and implements work-instructions (techplan in short)
for a given change or incident/problem ticket. Despite the
growth in the number of customer accounts being delivered by
a large strategic outsourcing provider, the above lifecycle often
evolves differently for each account and largely remains lacks a
structured approach. The ad hoc approach may be described as
follows: a change ticket is typically executed without a formal
plan detailing the techplan or the commands that need to be
executed. The system admin who is executing the techplan has
what needs to be done in his/her mind or noted in one or more
documents on his/her workstation. There are potentially
multiple windows open on the workstation and the user sifts
through these windows to execute the next command for a
server. Typically commands are manually copy-pasted from
the personal notes and documents on the workstation to a
server client window like PuTTY [8]. The execution logs are
typically not harvested for future analysis. As more and more
customers are being onboarded, service providers are grappling
with how to increase productivity and prevent human errors
from occurring in executing the tickets while still having
lower-skilled personnel execute tickets given the complexity of
the managed environment. It has been observed for most
complex large scale systems, errors are often due to operator
errors [3]. Research efforts in mitigating such human errors in

IT management has looked at different ways of understanding
the causes of such operator errors [7], modeling configuration
problems to alleviate chance of errors [5][6], as well as,
proposed techniques to prevent or counter such errors [2].

Figure 1: Framework for Techplan Creation and Execution
In this work, we propose a detailed design of a web-based

framework where the different facets of the lifecycle of ticket
execution namely (1) creation of a techplan, (2) an optional
peer review of the plan, and (3) implementation of the plan are
seamlessly unified. Since at present a bulk of the process is
manually driven, therefore it is prone to human errors leading
to unplanned downtime for the servers. The main
contributions of this paper are: (1) Identification of the
minimal data fields and techplan format necessary for a system
admin to address the life-cycle of a ticket, (2) a web-based
design that allows for collaborative technical plan creation and
review, and (3) a design that uses existing server client
software (like PuTTY [8] for windows, xTerm for linux) and
yet precludes common human errors like implementation of
the techplan at the wrong time, or on wrong server, or skipping
of a command, (4) presentation of the actual usage experience
in 3 pilots in a large IT service delivery provider.

II. DETAILED DESIGN AND TOOL COMPONENTS
A service request for change or incident is represented as an

electronic document called ticket in different ticketing systems
(TSs), like BMC Remedy, IBM Maximo, Manage Now. Each
TS has its own representation of the ticket making it hard for
even an experienced user to learn the nuances and style of each
one of them. After the ticket is created, a techplan (containing
detailed work instructions/commands) is created by the creator
and attached to the ticket. An executor potentially different
from the creator may implement the ticket. The entire process
of creation and execution is usually ad hoc. We next propose a
framework, called Facade, to alleviate the current ad hoc
approach in creation and execution of a techplan.

 In Figure 1, we show Façade’s client-server architecture.
Ticketing System Adapters (TSAs) virtualize the disparate TSs
and pull minimal information necessary for the creator and the
implementer to perform their tasks. The creator uses a web
browser, say Firefox, on his workstation to access the Techplan
Creation Wizard (TCW) which is part of the Client Interface
(CI) to create a techplan as well as create templates for

subsequent sharing and reuse. The CI also has a sub-
component, called PRI, to submit techplan/templates for
review by experts/peers for preventing any error. The executor
uses the TE subcomponent of CI to execute the techplan. All
the actions are automatically recorded for future verification
and analysis. TLM provides the server-side logic for TCW,
PRI, and TE.

A. Ticket Details fetched from Ticketing Systems
Ticketing Systems are overloaded with many attributes,

which may be useful in different contexts. With help from
subject matter experts (SMEs), we identified that 7 key
attributes are necessary for techplan creation, review, and
execution. These are id, description (for describing the ticket),
start and end time of ticket, assignee (designated person for the
ticket), submitter (one who submitted the ticket in the TS),
status of the ticket in TS. Thus Facade is able to provide a
uniform view of a ticket pulled from diverse TSs, without
cluttering the user’s view with information not relevant to him
for the task.

B. Collaborative Techplan Creation and Peer Review
A techplan consists of a high-level plan (HP) and Task

Specifications (TSpec). HP consists of high-level tasks, where
each high-level task (HLT) is elaborated further in TSpec in
terms of either sub-tasks or Unix commands/script. Mentioned
along with each HLT are the server(s) to execute the task on
(we allow same task to be executed in parallel on multiple
servers). TCW is used to collaboratively and asynchronously
create the techplan. Evolution of techplan as it changes is
maintained via versioning. Another feature is that a plan
creator can create templates (of whole plans or of tasks) by
introducing variables for command or task parameters. We
have analyzed tickets from a large telecom account to discover
that repeatability of tasks across plans is quite common [4]. A
techplan can be submitted for peer review to multiple
reviewers who are alerted by email. Reviewers provide rating,
risk, and modification to the techplan (using TCW) that helps
improve the quality of the plan, and speeds up the approval
process.

C. Techplan Execution and Audit Management
The TE component provides a GUI button for each High-

Level Task (HLT) to launch a PuTTY window for each of the
servers specified for the HLT. PA (Policy Checker) allows the
button press to result in a PuTTY window opening only when
the ticket is approved and only within the ticket time window.
For each command within a HLT, a GUI button is provided to
push the text of the command simultaneously to (but only to)
the servers specified corresponding to the HLT. This prevents
typos, as well as ensures execution of a command on the
correct server. AutoIt/xdotool [10] is used to provide WKML
(see Figure 1) for pushing the command text to PuTTY
windows. The executor monitors the result of the current
command execution to decide upon executing the next
command or aborting. If a command is skipped the TE
provides with necessary prompts for the user. If Facade Client
runs on a Linux workstation then xTerm is launched for SCW.
TLM component is responsible for recording all the actions of
the creator, reviewer, and the executor vis-à-vis Facade along
with the PuTTY execution logs. The logs provide valuable

information in the event of a failed plan for performing
forensics on the causes of failure.

III. USAGE EXPERIENCE RESULTS FROM PILOTS
We hosted the Façade web-application from India. IT

delivery centers across the world, India (#Tickets: 170, #Users:
14), Argentina (#Tickets: 50, #Users: 4), and Brazil (#Tickets:
12, #Users: 2), participated in usage tests. Figure 2 presents the
survey on the usage and benefits of Facade. Based on the
promising result, deployment in one delivery center is in
progress.

Figure 2: Usage Experience from 3 Pilots

IV. CONCLUSION & FUTURE WORK
The observed benefits of a structured framework are paving

the way for use of tools, like Façade, in IT delivery operations
worldwide. Some of the key further requirements expressed
are: extension to Windows RDP and use of PowerShell,
enhance techplan formats to include programming constructs,
automation in executing the next command via evaluation of
output of the previous command.

REFERENCES
[1] IT Infrastructure Library. ITIL service support, version 2.3. In Office of

Government Commerce, 2000.
[2] Fabio Oliveira, et al. “Barricade: Defending systems against operator

mistakes”. In Proc. of Eurosys, 2010.
[3] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do internet

services fail, and what can be done about it. In Proc. of Usenix
Symposium on Internet Technologies and Systems, 2003.

[4] Venkat Madduri, et al., “Towards Mitigating Human Errors in IT
Change Management Process”. Proceedings of the ICSOC, 2010

[5] Alexander Keller, et al., "A Configuration Complexity Model and Its
Application to a Change Management System ". IEEE Transactions on
Network and Service Management, 2007.

[6] A. B. Brown, “Oops! Coping with Human Error in IT Systems,” Queue.,
vol. 2, no. 8, Dec. 2004.

[7] D.Patterson et al., Recovery Oriented Computing (ROC): Motivation,
Definition, Techniques and Case Studies, Computer Science Technical
Report UCB//CSD-02-1175, U.C. Berkeley, 2002.

[8] PuTTY, http://www.putty.org/
[9] Larisa Shwartz, et al., "Quality of IT service delivery - Analysis and

framework for human error prevention", SOCA 2010.
[10] AutoIt: http://www.autoitscript.com/site/autoit/ for windows; xdotool :

http://www.semicomplete.com/projects/xdotool/ for linux.

http://www.autoitscript.com/site/autoit/
http://www.semicomplete.com/projects/xdotool/

	I. Introduction
	II. Detailed Design and Tool Components
	A. Ticket Details fetched from Ticketing Systems
	B. Collaborative Techplan Creation and Peer Review
	C. Techplan Execution and Audit Management

	III. Usage Experience Results from Pilots
	IV. Conclusion & Future Work
	References

