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Abstract-With the growing use of virtual servers for hosting 
applications, management of large IT infrastructure faces new 
challenges. In order to reduce the capital expenditure at data cen­
ters, virtual server consolidation approaches has been the focus of 
attention. However, server consolidation inadvertently introduces 
a new point of failure, which is the physical resource on which 
the virtual machines are hosted. A common practice is that for a 
multi-tier application, different tiers of the application are hosted 
from a single physical machine. Although this is beneficial in 
maintaining low cost of ownership when the number of hosted 
applications is low, with increasing number of hosted applications 
this leads to a skewed distribution of the applications. We propose 
that spreading the virtual servers of different applications across 
the available physical resources can lead to a more resilient design 
for multi-tier application hosting. We formulate the problem of 
striping the virtual machines across multiple physical machines as 
an optimization problem. We propose two MIP based techniques, 
where the first solution is fast but may be infeasible in many 
cases, while the other one is better in terms of accuracy but 
takes more time. The solution is tested on data sets representing 
typical hosting environments. 

Index Terms - Virtual Machine, Mixed Integer Problem, 

Optimization, Striping, Load Balancing, Resiliency 

I. INTRODUCTION 

A. Motivation 

Management of a large data center serving ever growing 

business demands of a customer is a challenging problem. 

On the one hand the capital expenditure for infrastructure 

must be kept at a minimum, while servicing the growing 

requests. Typically, in order to keep the capital expenditure 

low a data center acquires just the right set of hardware 

infrastructure for hosting the applications. At the onset when 

a service delivery organization takes over the IT operations 

of a customer, the existing applications are moved to the new 

IT infrastructure. A likely scenario is that several applications 

from a multi-tier software product suite are hosted on different 

virtual servers, but the virtual servers may reside on the same 

physical hardware. This is beneficial in keeping the total cost 

of infrastructure low. Whenever, a new application suite is 

introduced, new hardware infrastructure is provisioned, and 

different tiers of the new application are hosted on virtual 

servers resident on the same physical machine. Over a period 

of time, this leads to a scenario where various tiers of an 

application are hosted from the same physical machine. In 

the event of a failure of the physical resource, every tier of 

the application suite faces downtime. In our view, a desirable 

scenario would be if the physical server hosted applications 

from different application suites. 

Although intuitively it appears that the proposed setup leads 

to downtime for more application suites, in practice it could be 

quite effective. For instance, an ecommerce application, like 

Trade-6, has three tiers: web-tier for browsing, application tier, 

and the database tier for servicing the buy transactions. It has 

been observed that for most of the ecommerce sites the ratio 

of browse-to-buy is about 5%; a small proportion of the web­

page visitors end up doing any transaction [1]. Hence if the 

database tier goes down it may not be disruptive to most of the 

visitors. In essence, we are presenting a case for resiliency and 

faster recovery in the event of a hardware failure by striping 

the virtual servers of a multi-tier application over available 

physical machines; we term this as the VMSpreader problem. 

Striping would spread the different tiers of an application 

across all the available physical machines. 

In a cloud environment, when a user requests for a set 

of virtual servers, these are usually provisioned on a single 

physical resource. In Amazon EC2 [2], the virtual machines 

are provisioned on a single physical resource based on the 

creation parameters. For typical scenarios, it has been shown 

that a user's request is serviced from a single target host [3]. 

In order to reduce chance of complete service disruption to 

an user, it might be preferable to spread the virtual machines 

across multiple physical machines. 

B. Problem Instance 

We present a simple scenario to illustrate the problem 

further. While on-boarding a new client, an IT delivery or­

ganization on-boards only a single application, say App-l, 

for the customer. App-! is a 3-tier application and is hosted 

on 3 separate virtual machines. However, the total resource 

requirement of the 3 virtual machines can be accommodated 

in a single physical machine. Later on the customer wants 

another 3-tier application, say App-2, to be hosted. The IT 

delivery unit provisions another physical resource for hosting 

the 3 tiers in 3 separate virtual machines, but uses the same 

physical server. All tiers of an application are thereby hosted 

from a single physical resource. We believe that this scenario 

is detrimental to application resiliency because it introduces a 

single point of failure. We claim that spreading the different 

tiers of the applications, App-! and App-2, across the available 

physical resources is a more resilient design. Time to recover a 

single tier of an application will lead to a lower Mean-Time-to-
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Fig. 1. A typical scenario in a data center showing desired transformation of 
application hosting. Here two applications types, CRM and SAP are shown. 
At the beginning, all 3 tiers of the two applications are resident on a single 
physical machine. After transformation, the tiers are balanced across the two 
physical machines. 

Recover (MTTR) than bringing all the tiers up. Also, note that 

in a typical IT delivery environment, there are separate teams 

handling each application suite. The scenario is illustrated 

pictorially in Figure 1, where the desired transformation is 

demonstrated. 

C. Contribution 

In this paper, we address the problem of planning a failure 

resilient hosting environment for different tiers of multiple n­

tier applications. The planner helps in spreading the hosted ap­

plications across multiple physical machines, and can be used 

at the initial planning phase, and at the time of provisioning 

new applications. More specifically, our main contributions in 

this paper are: 

1) We present an optimization model for striping the virtual 

machines dedicated to an application across available 

physical resources. 

2) Given that the VMSpreader problem is an NP-hard 

problem, we present and evaluate heuristics for solving 

the problem. 

The rest of the paper is organized as follows. In Section II 

we present similar work in VM consolidation. Section III 

presents a description of the problem and its variations. We 

describe the different constraints in the formulation of the 

problem in Section IV followed by the optimization formu­

lation of the problem in Section V. Section VI presents the 

approaches to solving the problem and the results on a sample 

dataset. Finally we conclude in Section VII. 

II. RELATED WORK 

The problem of VM placement in data centers and cloud 

environment has been studied with different objectives. Verma 

et a1. proposes a solution for VM placement in a data center 

with the goal of minimizing the power consumption and 

number of migrations [4]. Tang et a1. solves the problem 

of application placement in a set of machines in order to 

maximize the utility [5]. Similarly, Bobroff et a1. proposes a 

dynamic approach to consolidate servers on physical machines 

[6]. In most of these solutions, which are cast as optimization 

problems, there is no restriction on placing a virtual machine 

on any physical machine. This can lead to the undesirable 

situation when different tiers of the same application gets 

consolidated on the same physical machine. In this work, our 

aim is to guard against the scenario where a physical server 

failure can lead to complete disruption of service for a multi­

tier application. We formulate the problem such that different 

parts of a multi-tier application are never placed on a single 

physical machine. 

In a recent work, Jung et a1. proposes multi-tier application 

resiliency by creating replicas of the VMs, and ensuring that 

the replicas are placed on different physical machines [7]. This 

is similar in concept to our work, however, we address the 

problem of balancing the VMs according to their required 

capacities. We provide different notions of VM balancing by 

striping the VMs across physical machine. To the best of our 

knowledge, this problem has not been tackled before. 

One effort which proposed a solution for the VM balancing 

problem is Load Balancing of Virtual Machine (LBVM) [8]. 
LBVM does not provide details of the technique used for 

balancing the VMs across physical servers, however, they do 

mention that it is an effective way to guard against the single 

point of failure introduced by placing multiple correlated VMs 

on the same physical server. We present a detailed and formal 

description of the problem, and propose effective solutions to 

the problem. 

III. PROBLEM DESCRIPTION 

The typical setup in a data center has a collection of 

physical machines, which hosts a set of virtual servers. Each 

virtual server hosts a single tier of a multi-tier application. 

The collection of physical machines is denoted by PMs; the 

virtual machines that are hosted on these physical machines 

are denoted by VMs. Each virtual server has a pre-defined 

resource allocation based on the application workload. This 

is usually static allocation based on the peak load of the 

application. Thus, we can assume that there is an initial 

allocation of the VMs on the various PMs. Based on the 

application type that is running on the virtual machine, we 

assign a type to the VM. For example, a VM hosting one tier 

of the multi-tier application CRM will be tagged as being of 

type CRM. When a new multi-tier application is marked for 

hosting, new PMs are acquired, and VMs are allocated on 

those. In most cases, the set of VMs on a PM will be of the 

same type since at one time only one new application suite 

will be provisioned. Thus, over time the distribution of the 

various VM's by type on each PM gets skewed. Each PM 

will host VMs from a single application type. This introduces 

the single point of failure in terms of the PM. We propose to 

reallocate the VMs across the different PMs such that there 

is a "balanced" distribution of VMs of all application types 

on the PMs. It should be noted that as the application types 

increase, perfectly uniform balance becomes harder to acieve. 

Therefor, in our solution, we focus on minimizing the cost 

while achieving a balance as close to "uniform" as possible. 
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The cost of a transfer is determined by the number of transfers 

of VMs. Each transfer of a VM from one server to another is 

a costly operation and the goal is to minimize the number of 

such transfers. Thus, our objective function is to minimize the 

number of transfers of the VMs while achieving an as-close­

to-balanced distribution of the VMs on the PMs as possible. 

In a natural variant of the problem, the costs of transfers of 

a VM from one PM to another may depend on the VM (and 

the original and destination PMs) in question. This can be 

thought of as the non-uniform version of our main problem. 

We formulate the VMSpreader problem as a Mixed Integer 

Program (MIP). A mixed integer program is a mathematical 

program where some of the variables are forced to be integral, 

while some others may have relaxed constraints on them (for 

instance, 0 :s; x :s; 1). Since integer programs can encode NP­

hard problems like Vertex Cover, solving general MIPs in 

polynomial time is expected to be hard. A general reference 

for integer and linear programming is Schrijver [9J. 

A greedy solution approach will work easily only if one 

service type is present, but with multiple service types the 

problem is significantly harder. Another reason for not adopt­

ing a greedy heuristic is the following: while a greedy heuristic 

is computationally viable, the quality of solutions it produces 

might be much worse than the optimal number of transfers re­

quired to bring about balance. Also we make two observations 

- (1) new application suites are procured rather infrequently, 

and (2) the cost of transfers is usually high. Therefore, instead 

of using a greedy approach which might be computationally 

faster, we conclude that it is preferable to opt for a better 

quality (but computationally intensive) solution as provided by 

the MIPs, against a worse quality but computationally viable 

procedure (greedy approach). 

In typical application farms, a transfer is an expensive 

operation - thus one would like to optimize this while main­

taining balance. This is precisely what we aim to achieve 

by solving the MIPs discussed. A relevant point is that new 

application suites are procured rather infrequently, so it might 

be preferable to opt for a better quality (but computationally 

intensive) solution as provided by the MIPs as against a 

worse quality but computationally viable procedure (greedy 

approach). 

A. Problem Assumptions 

Prior to stating the problem using notation, we state the 

assumptions associated to the parameters and variables. It is 

assumed that a single VM cannot be hosted on multiple PMs 

since partitioning a VM into multiple parts is infeasible. It is 

also stipulated that when multiple VMs are allocated on a PM 

then all the necessary resources (like CPU, memory, network 

bandwidth) must be available. In our constraints, we capture 

the resource availability using a single variable for simplicity. 

The size of a VM is stated in terms of physical CPUs required. 

Since micro-partitioning [lOJ allows fractional CPU allocation 

to a VM, it is possible to have fractional allocation for a VM. 

Another point to note is that, each PM may have a super­

visor VM, called VIO, for which some resource has to be 

allocated. It is also possible that a PM is not perfectly packed 

at the beginning : this means that the total amount of resource 

of all the VMs (in the original configuration) on the PM may 

not consume the entire available PM resource. 

Before we proceed, let us state the parameters of our 

problem. We will let M denote the total number of VMs, 

and let N denote the number of PMs, where M ;::: N. Let 

TY denote the set of Types of the virtual machines. Each 

Type denotes one multi-tier application. In the rest of the 

discussion, the index i will be reserved to range over Virtual 

Machines (VM); the index j will be reserved to range over 

Physical Machines (PM); and the index k will be reserved for 

Types (TY), unless otherwise explicitly stated. We also denote 

the resource capacity of the PMj as Resourcej, and the size 

of the VMi as Sizei. 

There is also an initial configuration of the VMs on the 

PMs, which lists the set of VMs (along with their types) on 

each PM. 

B. Hardness of the VMSpreader problem 

In the following, we pinpoint the hardness of the VM­

Spreader problem. We will distinguish between several ar­

guably natural cases of varying complexity. Each case in the 

following will be parametrized as below: 

• The number of VM types k. 

• The number of PMs N. 

• The resource capacity of each PM. 

Let us start off by considering the (apparently) simple case 

of k = 1, and N = 2. Furthermore, suppose that both the PMs 

have the same size. We reduce the (weakly) NP-hard problem 

of Parti tion to this case [I1J. To elaborate, let us consider 

an instance of the Part it ion problem: we are given n 

numbers al,a2,'" ,an, and the Partition problem is to 

decide whether there is a partition of the n numbers into 2 
(disjoint) sets such that the sum of the numbers in one set is 

equal to the sum of the numbers in the other. This is one of 

Karp's original list of 21 NP-complete problems. 

We reduce the problem instance above of the Partition 

problem to a problem instance of the simple case of our 

VMSpreader problem: we will have n VMs of Type 1 on 

the first PM, with sizes aI, a2, ... , an and the second PM 

is empty. Also let the capacities of the two PMs be equal to 

Li ai· Then there is a way to perfectly balance the VMs on 

the 2 PMs if and only if there is a solution to the Part i tion 

problem. Thus this simple case is already NP-hard. However, 

the Partition problem is weakly NP-hard: this implies 

that for a;'s that are of magnitude polynomial in the input 

size (i.e. n), there exists an efficient (viz. polynomial time) 

dynamic programming solution for the Part it ion problem 

[I1J. Given a single type of VMs, we can easily provide 

a modified dynamic program to show that the case under 

consideration (k = 1, N = 2) may be efficiently solved 

in pseudo-polynomial time *. Details are omitted because of 

space considerations. 

*For details of pseudo-polynomial time algorithms, strong/weak NP­
hardness, refer to [11] 
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We proceed to consider the situation where there are N PMs 

(instead of 2 as in the above case). We reduce the (strongly) 

NP-hard problem of 3 -Part it ion to this case. An instance 

of the 3-Partition problem consists of 3m integers (for 

a number m), and the problem is to decide if there is a 

partition of the numbers into m subsets, such that the sum 

of the numbers in each subset is the same. Via a reduction 

similar to the above, we can easily reduce 3 -Parti tion to 

the case of N PMs. Thus, the VMSpreader problem with even 

1 type (and same resource capacities for every PM) is already 

strongly NP-hard! 

We conclude thereby that the fully general VMSpreader 

problem comprising of multiple types, and multiple PMs of 

possibly varying sizes may only be harder. The strong hardness 

results for the VMSpreader problem as outlined above mean 

the following: Given a problem instance of the VMSpreader 

problem it is NP-hard to even decide if there is a feasible 

solution that achieves peifect balance of the various VM 

types across all the PMs; note that we are talking only about 

the basic feasibility question here, without even approaching 

the (naturally harder) optimization question of minimizing the 

number (or cost) of transfers. 

It is thereby clear that we will have to somehow cope with 

the inherent hardness of the problem in our design of practical, 

actionable solutions for the VMSpreader problem. 

IV. CONSTRAINTS IN THE VMSPREADER PROBLEM 

We describe the constraints involved in the VMSpreader 

problem. There are essentially three types of constraints: (i) 

the allocation constraints ensure that any single VM is not 

placed on multiple PMs; (ii) the resource constraints ensure 

that after allocation, the total available resource capacity of 

any specific PM is not exceeded; (iii) the Load-Balancing 

constraints guarantee that the application types are spread 

appropriately across all the PMs. 

While the first two constraints are reasonably well-defined, 

the third Load-Balancing constraints requires some qualifi­

cation. Given a problem instance with k types of VMs, and 

various PMs of varying sizes, it is not instantly clear as to 

what a natural definition of "balance" should be. (The reader 

may note that this situation is akin to "clustering" of data 

points [12], where the right notion/metric of clustering often 

depends on the problem at hand.) We offer two natural notions 

of balance; the motivation for these notions came from differ­

ent business scenarios. It is perhaps worthwhile mentioning 

here, that the insight behind these notions of balance arose 

from such aforementioned metrics for clustering. Herein, we 

describe the notions of balance qualitatively, relegating the 

more quantitative versions to Section V. 

The first notion of balance may be summarized as follows: 

Given k types of VMs, consider the fraction of VMs of any 

specific type over the VMs of all types. Load balancing implies 

then that, every PM ought to be assigned at most this fraction 

of the VMs of a specific type. Call this notion of balance 

StaticBalance. 

We also consider a more delicate notion of balance. Given 

any configuration/allocation of VMs on PMs consider the 

fraction of (the sizes of the) VMs of any specific type on 

a single PM over (the sizes of) the VMs of that specific type 

over all the PMs. Then a reasonable notion of balance implies 

that this fraction should roughly be equal across all types. In 

contrast to the notion of StaticBalance, call this notion of 

balance DynamicBalance. 

The reader is urged to note the subtle difference between 

the two notions of balance: the notion of StaticBalance does 

not need to consider any specific configuration to decide the 

fractions on each PM. The second notion of DynamicBalance 

considers any specific configuration to decide the fractions 

of VMs to allocate to each PM. Thus, while the definition 

of StaticBalance does not depend on the configuration, the 

notion of DynamicBalance imposes a metric on the specific 

configuration. 

Apropos this discussion, we enumerate the desiderata for 

effective solution approaches. 

1) The solution approach needs to overcome the "infeasi­

bility" issues as outlined in Subsection III-B. 

2) The solution approach should exploit the inherent lin­

earity of the Allocation and Resource Constraints. 

3) Solutions achieved should adhere to notions of quality 

of balance as described above. 

Item (2) above indicates that a reasonably efficient way to 

solve the problem would be to somehow linearize the Load 

Balancing Constraints discussed above. This would enable us 

to formulate our problem as a Mixed Integer Program (MIP), 

rather than as substantially more complex nonlinear programs. 

Without further ado, we proceed to formulate the VM­

Spreader problem as two MIPs, corresponding to the two 

notions of balance. 

V. MIP FORMULATIONS 

As described in Section IV, we will consider two separate 

MIPs for either notion of balance. Corresponding to the 

notions of StaticBalance and DynamicBalance, we will call 

the MIPs, the S - MIP and the D - MIP, respectively. 

The MIPs will have some common parameters, as listed in 

Table 1. 

In addition to this, the MIPs also share the following 

Decision Variables. A binary variable Vij indicates whether 

the VM i is finally to be placed on the PM j. Thus, 

Vij = 1 implies that VM i resides on PM j in the solution 

configuration. 

As discussed in Section IV, the S - MIP and the D - MIP 

have the same Allocation and Resource constraints. We 

proceed to formally enunciate these constraints, before moving 

on to the MIP-specific Load Balancing constraints. 

The Allocation constraints (one for each VM i): 

\Ii E VM: L Vij = 1 

jEPM 

(1) 
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Notation 

Gij 

Sizei 

Typei 

Resourcej 

Costij 

Arity Explanation 

i E VM, j E PM This encodes the initial 

state of the machine. 

Gij = 0 if the VM i 
initially resides on PM j 

and is 1 otherwise. 

i EVM Each virtual machine has 

a size associated with it. 

i EVM Each virtual machine has 

a "type" associated to it; 
this is a symbolic string, 

for ego CRM, SAP 
j E PM Each physical machine 

has a limit on its resource. 

i E VM, j E PM A transfer of virtual ma-

chine i to physical ma-

chine j incurs a cost. 

TABLE I 
PARAMETERS IN THE MIPs 

Thus this constraint implies that every VM i is allocated, 

in the solution to precisely (a single) PM j. 

The Resource constraints (one for each PM j): 

Ic/j E PM: L Vij . Sizei :s; Resourcej (2) 
iEVM 

We proceed to discuss the cardinal Load Balancing con­

straints separately for the S - MIP and the D - MIP. In 

the following, we will also consider the corresponding cost 
functions for either MIP. 

A. The S - MIP formulation 
The Load Balancing constraints for S - MIP ensure that 

every machine receives an equal proportion of each type of 

virtual machine. Given a configuration of VMs on PMs, let 

us consider a specific PM j and calculate the sizes that VMs 

of various types should be placed on PM j. Define a parameter 

Tjk for every j E PM and every k E TY that evaluates to the 

number of units of VM of type k that should be placed on 

any specific PM. We can compute this parameter as follows: 

2:iEVM:Typei=k Sizei 
R Tjk = '\"' 

S. . esourcej 
L..,iEVM 1zei 

Given this, the constraint reads as follows: 

Ic/j E PM, k E TY: 
iEVM:Typei=k 

Cost Function for S - MIP: 

(3) 

(4) 

The objective function takes into account the total number 

of transfers across various physical machines and aims to 

mlmmlze this total. Thus the objective function IS modeled 

as: 

min (5) 
iEVM,jEPM 

Here, note that the vector of binary parameters Gij encodes 

the initial configuration. We let Gij = 0 if the VM i resides on 

PM j and 1 otherwise. Thus, the above cost function correctly 

encodes the number of transfers (i.e. where Gij = 1). 

This objective function is sufficiently generic. For instance, 

if we were to consider the problem where each transfer of a 

virtual machine to a physical machine has an associated cost, 
then we may appropriately transform our objective function as 

min (6) 
iEVM,jEPM 

B. The D - MIP formulation 

Building up to the Load Balancing constraints in D - MIP, 

we will keep a single "measure-of-balance" variable Z in ad­

dition to the other (binary) decision variables shared between 

S - MIP and D - MIP listed before. The cost function will 

now have two components as compared to the single compo­

nent in S - MIP. We will also have a weighting parameter (3 

in order to relatively weigh the two components in the cost 

function. The new constraints are as follows: 

Ic/j E PM, k E TY : Z ?: 

L Vij . Sizei ) . ( L Sizei ) -
iEVM:Typei=k iEVM:Typei#k 

Vij . Sizei ) . ( 
iEVM:Typei#k iEVM:Typei=k 

Cost Function for D - MIP: 

min 
iEVM,jEPM 

(7) 

(8) 

Let us elaborate on the constraints given above and the extra 

term in the cost function. Suppose there is a configuration of 

the VMs on the different PMs that achieves perfect balance. 

We essentially want a function (of the different allocations) 

that is 0 precisely when this happens. Our constraints and the 

Z term in the objective function are a realization of this. 

Note that a solution in VijS is perfectly balanced if the 

following holds for every type k: 

2:iEVM:Typei =k Vij . Sizei 

2:iEVM:Typei #k Vij . Sizei 

2:iEVM:Typei=k Sizei 

2:iEVM:Typei #k Sizei 
(9) 

The Load Balancing constraints in D - MIP are the lin­
earizations of the above. We consider a deviation-from­

balance term for each PM j and then we consider the 

maximum deviation-from-balance across all the PMs. This is 

encoded in the variable Z, which is to be thereby minimized, 

along with the original objective of minimizing the number 

(or cost) of transfers. We weigh these relative components 

via the parameter (3: this parameter may be thought of as 

the penalty for not achieving perfect balance. Depending on 

the problem instance at hand, we may need to vary (3 in 

order to achieve reasonably effective feasible solutions to the 

VMSpreader problem. 
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C. Comparisons of the two formulations 

Let us recall the three desiderata for solution approaches 
to the VMSpreader problem, as outlined in Section IV. By 
design, either of S - MIP or D - MIP achieves item (2) 

therein. However, notice that S - MIP suffers in that, it does 
not obey item (1). In fact, given the hardness results in 
Section III-B, we cannot expect S - MIP to always output 
feasible solutions. 

For instance, consider the situation where we have two PMs 
each with 5 units of resource. Let there be two VMs, one of 
type CRM (of size 4 units) initially resident on PMl, while 

the other VM is of type SAP (of size 4 units) resident initially 
on PM2. In this case, no transfers are possible (since it is not 
allowed to transfer "part" of a VM). Thus the S - MIP returns 
as "infeasible". 

The design of D - MIP was precisely to remedy this, via 

the useful artifice of Lagrangian Relaxation. Suppose that 
the variable Z in D - MIP had a hard constraint Z = 0 

(encoding peifect balance). Lagrangian relaxation techniques 

imply that we may relax this constraint to Z ;::: 0 and take it as 
a component in the objective function, with a corresponding 

Lagrangian relaxation parameter (3. Addressing item (2) in the 

list of desiderata in Section IV, note that setting (3 = 00 

corresponds to infinite penalty for deviating from perfect 
balance; thus this leads to the (potentially infeasible) zone 

of "perfect balance". Lowering (3 from 00 brings us to the 
feasible zone, while setting (3 = 0 corresponds to zero penalty 
for deviations from balance. An application at hand will have 
to consider varying (3's; thus there is a tradeoff between quality 
of balance and cost of transfers. To reiterate, this is the best 
one can do, because of the hardness results in Section III-B. 

However, one may now ponder as to why such a method 
was not adopted for S - MIP too. The issue is that there 

are quite a few constraints encoding "balance" in S - MIP, 
which will all need to be taken into the objective function 
with corresponding Lagrangian parameters. While we could 
vary a single parameter (3 for D - MIP, this would no longer 
be possible in this situation. 

VI. RESULTS 

Given the two MIP formulations in Section V, we can 
consider solving their linear relaxations as linear programs 
(LP); however the variables Viy

'S may thereby be fractional. 

A typical theme in LP-based optimization is to derive a 
"good" integer solution by rounding the variables (either 
deterministically, or in a randomized fashion) in the LP. 
A motivation for such rounding schemes is that LP's are 

guaranteed to have polynomial runtimes, whereas such a 
guarantee is perhaps not possible for general MIP's (under the 

commonly believed hypothesis that P -I- NP). Nevertheless, 
we proceed to elucidate as to why such rounding schemes 

may not apply to the VMSpreader problem. While it is easy 
to round the fractional variables Vij to satisfy the Allocation 

constraints, we will not be able to guarantee that the rounded 
variables satisfy either the Resource constraints or the Load 

Balancing constraints (for either of S - MIP or D - MIP). 

PM Id Resource VMs of VMs of Total 
on PM Type-l (size) Type-2 (size) Utilized 

Re-
source 

1 16 5 (13) 0(0) 13 
2 16 6 (12.5) 2 (2.5) 15 
3 16 1 (2.5) 7 (12) 14.5 
4 16 3 (5) 0(0) 5 
5 16 0(0) 4 (10) 10 

TABLE II 
TABLE SHOWING THE INITIAL DISTRIBUTION OF THE 

APPLICATION TYPES ON DIFFERENT PHYSICAL MACHINES 

Under this scenario, we have to apply mixed integer pro­
gramming to the VMSpreader problem. We code the problem 
with AMPL and use the CPLEX solver to solve the optimiza­
tion problems in S - MIP and D - MIP [13]. As mentioned 
before, the issue with S - MIP is that it may be infeasible 

because of the Load Balancing Constraints: 

Vj E PM, k E TY : 
iEVM:Typei=k 

Although S - MIP appears to be inferior with regard to 
the accuracy of the results, and potential infeasibilities, its 

benefit lies in the faster generation of results, as compared to 
D - MIP. This can also be understood from the standpoint of 
the variable Z in D - MIP that considerably complicates the 
branch-and-bound procedures inherent in typical MIP solvers. 

Thus, while D - MIP always gives feasible solutions (subject 
to suitably varying (3), S - MIP often provides fast rough-cut 
solutions, which may be reasonably good for the case at hand. 

We proceed to present our evaluation results based on a 
typical data set from a large hosting environment. The data set 
contains two multi-tier applications, denoted Type-1 and Type-
2, spread over 5 physical machines. There are 15 applications 
of Type-1 and 13 applications of Type-2. The size of the VMs 

range from 0.5 to 8. The size of each physical machine (PM) 
is 16. The PMs are not packed to the full capacity. The split 
of VMs on each PM at the beginning is shown in Table II. 

Aggregate total allocation at the beginning for each type on 
each PM is shown in Figure 2. It can be observed from the 
figure that there are some PMs which have no VMs hosting 
application of one type, leading to the skew in distribution. 

We solve the optimization problem with the objective func­

tions as shown in Equation 5 and Equation 8. The solution 
of S - MIP yields 5 as the number of transfers required. The 
problem is solved in just 0.015 sec. The distribution of the 
VMs is shown in Figure 3. 

The solution of D - MIP is 8 transfers. The time taken is 
529.89 sec. Noteworthy here is the difference in the striping of 
the two applications found by the two solutions. The solution 
of D - MIP is significantly better than that of S - MIP 

in terms of striping the VM's across the available physical 
resources. Figure 4 shows the distribution of VMs for the case 

with 8 transfers. 
The result indicates that even in instances where the 

S - MIP is solvable it may not be the optimal in terms of 
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Fig. 2. Initial aggregate allocation for each type on individual Physical 
Machines 
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Fig. 3. Total size of Type-I and Type-2 applications after distribution of VMs 
using S - MIP. This takes 5 transfers, but fails to achieve good balance. 

load balancing the VM's, as discussed in Section V. W hile 

the solution of D - MIP is typically closer to optimal, it 

takes much longer to solve. Thus, depending on the business 

scenario, it can be left to the user to tradeoff between a better 

balanced solution and the time taken to solve. 

VII. CONCLUSION 

The rise in the use of Virtual Machine technology in hosting 

applications in data centers present new set of challenges 

in service management. Virtual servers are used for hosting 

different tiers of multi-tier applications. As all applications are 

not provisioned at the same time, it is common to minimize the 

cost of infrastructure by hosting all the VMs of an application 

on the same physical machine. This introduces a single point 

of failure. Even when new n-tier application is added, the 

same procedure repeats. We propose to alleviate the problem 

by spreading the different tiers of the applications across 

the available physical resources. We modeled the striping of 

Virtual Machines as an optimization problem where the goal 

is to spread the n-tiered applications proportionally across the 

Physical Machines while minimizing the number of VM trans­

fers. The Mixed Integer Problem (MIP) formulation of the 
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Fig. 4. Total size of Type-l and Type-2 applications after distribution of VMs 
using D - MIP. This takes 8 transfers, but achieves near optimal balance. 

problem is NP-hard. In order to reach a solution, we proposed 

two heuristics. We presented results on a data set taken from 

a real data center environment to show the performance of the 

solutions. 

In the current approach, no restriction is imposed on the 

placement of VM's from two different types on a PM. 

However, one may want to prevent (for instance) all database 

servers to be co-located on a PM. This can be easily incor­

porated in our formulation. 

A future direction to this work would be to allow for 

probabilistic failure of PM's and adjust the VM placements 

accordingly. For each PM, the Mean Time To Failure (MTTF) 

can be taken into account, and VM's can be preferentially 

placed on PM's with higher MTTF. 
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