
12th IFIP/IEEE International Symposium on Integrated Network Management 2011

VMSpreader: Multi-tier Application Resiliency

through Virtual Machine Striping

Pradipta De, Sambuddha Roy

IBM Research, India Research Lab, New Delhi, India

pradipta.de@in.ibm.com, sam buddha @in.ibm.com

Abstract-With the growing use of virtual servers for hosting
applications, management of large IT infrastructure faces new
challenges. In order to reduce the capital expenditure at data cen­
ters, virtual server consolidation approaches has been the focus of
attention. However, server consolidation inadvertently introduces
a new point of failure, which is the physical resource on which
the virtual machines are hosted. A common practice is that for a
multi-tier application, different tiers of the application are hosted
from a single physical machine. Although this is beneficial in
maintaining low cost of ownership when the number of hosted
applications is low, with increasing number of hosted applications
this leads to a skewed distribution of the applications. We propose
that spreading the virtual servers of different applications across
the available physical resources can lead to a more resilient design
for multi-tier application hosting. We formulate the problem of
striping the virtual machines across multiple physical machines as
an optimization problem. We propose two MIP based techniques,
where the first solution is fast but may be infeasible in many
cases, while the other one is better in terms of accuracy but
takes more time. The solution is tested on data sets representing
typical hosting environments.

Index Terms - Virtual Machine, Mixed Integer Problem,

Optimization, Striping, Load Balancing, Resiliency

I. INTRODUCTION

A. Motivation

Management of a large data center serving ever growing

business demands of a customer is a challenging problem.

On the one hand the capital expenditure for infrastructure

must be kept at a minimum, while servicing the growing

requests. Typically, in order to keep the capital expenditure

low a data center acquires just the right set of hardware

infrastructure for hosting the applications. At the onset when

a service delivery organization takes over the IT operations

of a customer, the existing applications are moved to the new

IT infrastructure. A likely scenario is that several applications

from a multi-tier software product suite are hosted on different

virtual servers, but the virtual servers may reside on the same

physical hardware. This is beneficial in keeping the total cost

of infrastructure low. Whenever, a new application suite is

introduced, new hardware infrastructure is provisioned, and

different tiers of the new application are hosted on virtual

servers resident on the same physical machine. Over a period

of time, this leads to a scenario where various tiers of an

application are hosted from the same physical machine. In

the event of a failure of the physical resource, every tier of

the application suite faces downtime. In our view, a desirable

scenario would be if the physical server hosted applications

from different application suites.

Although intuitively it appears that the proposed setup leads

to downtime for more application suites, in practice it could be

quite effective. For instance, an ecommerce application, like

Trade-6, has three tiers: web-tier for browsing, application tier,

and the database tier for servicing the buy transactions. It has

been observed that for most of the ecommerce sites the ratio

of browse-to-buy is about 5%; a small proportion of the web­

page visitors end up doing any transaction [1]. Hence if the

database tier goes down it may not be disruptive to most of the

visitors. In essence, we are presenting a case for resiliency and

faster recovery in the event of a hardware failure by striping

the virtual servers of a multi-tier application over available

physical machines; we term this as the VMSpreader problem.

Striping would spread the different tiers of an application

across all the available physical machines.

In a cloud environment, when a user requests for a set

of virtual servers, these are usually provisioned on a single

physical resource. In Amazon EC2 [2], the virtual machines

are provisioned on a single physical resource based on the

creation parameters. For typical scenarios, it has been shown

that a user's request is serviced from a single target host [3].

In order to reduce chance of complete service disruption to

an user, it might be preferable to spread the virtual machines

across multiple physical machines.

B. Problem Instance

We present a simple scenario to illustrate the problem

further. While on-boarding a new client, an IT delivery or­

ganization on-boards only a single application, say App-l,

for the customer. App-! is a 3-tier application and is hosted

on 3 separate virtual machines. However, the total resource

requirement of the 3 virtual machines can be accommodated

in a single physical machine. Later on the customer wants

another 3-tier application, say App-2, to be hosted. The IT

delivery unit provisions another physical resource for hosting

the 3 tiers in 3 separate virtual machines, but uses the same

physical server. All tiers of an application are thereby hosted

from a single physical resource. We believe that this scenario

is detrimental to application resiliency because it introduces a

single point of failure. We claim that spreading the different

tiers of the applications, App-! and App-2, across the available

physical resources is a more resilient design. Time to recover a

single tier of an application will lead to a lower Mean-Time-to-

978-1-4244-9221-31111$26.00 ©2011 IEEE 185

I CRM-web I
ICRM-webl

I CRM-OB 1 I CRM-OB I

....

�-CRM-app I ICRM-appl

I VIO-1 I I VIO-2 I I VIO-1 I I VIO-2 I

Fig. 1. A typical scenario in a data center showing desired transformation of
application hosting. Here two applications types, CRM and SAP are shown.
At the beginning, all 3 tiers of the two applications are resident on a single
physical machine. After transformation, the tiers are balanced across the two
physical machines.

Recover (MTTR) than bringing all the tiers up. Also, note that

in a typical IT delivery environment, there are separate teams

handling each application suite. The scenario is illustrated

pictorially in Figure 1, where the desired transformation is

demonstrated.

C. Contribution

In this paper, we address the problem of planning a failure

resilient hosting environment for different tiers of multiple n­

tier applications. The planner helps in spreading the hosted ap­

plications across multiple physical machines, and can be used

at the initial planning phase, and at the time of provisioning

new applications. More specifically, our main contributions in

this paper are:

1) We present an optimization model for striping the virtual

machines dedicated to an application across available

physical resources.

2) Given that the VMSpreader problem is an NP-hard

problem, we present and evaluate heuristics for solving

the problem.

The rest of the paper is organized as follows. In Section II

we present similar work in VM consolidation. Section III

presents a description of the problem and its variations. We

describe the different constraints in the formulation of the

problem in Section IV followed by the optimization formu­

lation of the problem in Section V. Section VI presents the

approaches to solving the problem and the results on a sample

dataset. Finally we conclude in Section VII.

II. RELATED WORK

The problem of VM placement in data centers and cloud

environment has been studied with different objectives. Verma

et a1. proposes a solution for VM placement in a data center

with the goal of minimizing the power consumption and

number of migrations [4]. Tang et a1. solves the problem

of application placement in a set of machines in order to

maximize the utility [5]. Similarly, Bobroff et a1. proposes a

dynamic approach to consolidate servers on physical machines

[6]. In most of these solutions, which are cast as optimization

problems, there is no restriction on placing a virtual machine

on any physical machine. This can lead to the undesirable

situation when different tiers of the same application gets

consolidated on the same physical machine. In this work, our

aim is to guard against the scenario where a physical server

failure can lead to complete disruption of service for a multi­

tier application. We formulate the problem such that different

parts of a multi-tier application are never placed on a single

physical machine.

In a recent work, Jung et a1. proposes multi-tier application

resiliency by creating replicas of the VMs, and ensuring that

the replicas are placed on different physical machines [7]. This

is similar in concept to our work, however, we address the

problem of balancing the VMs according to their required

capacities. We provide different notions of VM balancing by

striping the VMs across physical machine. To the best of our

knowledge, this problem has not been tackled before.

One effort which proposed a solution for the VM balancing

problem is Load Balancing of Virtual Machine (LBVM) [8].
LBVM does not provide details of the technique used for

balancing the VMs across physical servers, however, they do

mention that it is an effective way to guard against the single

point of failure introduced by placing multiple correlated VMs

on the same physical server. We present a detailed and formal

description of the problem, and propose effective solutions to

the problem.

III. PROBLEM DESCRIPTION

The typical setup in a data center has a collection of

physical machines, which hosts a set of virtual servers. Each

virtual server hosts a single tier of a multi-tier application.

The collection of physical machines is denoted by PMs; the

virtual machines that are hosted on these physical machines

are denoted by VMs. Each virtual server has a pre-defined

resource allocation based on the application workload. This

is usually static allocation based on the peak load of the

application. Thus, we can assume that there is an initial

allocation of the VMs on the various PMs. Based on the

application type that is running on the virtual machine, we

assign a type to the VM. For example, a VM hosting one tier

of the multi-tier application CRM will be tagged as being of

type CRM. When a new multi-tier application is marked for

hosting, new PMs are acquired, and VMs are allocated on

those. In most cases, the set of VMs on a PM will be of the

same type since at one time only one new application suite

will be provisioned. Thus, over time the distribution of the

various VM's by type on each PM gets skewed. Each PM

will host VMs from a single application type. This introduces

the single point of failure in terms of the PM. We propose to

reallocate the VMs across the different PMs such that there

is a "balanced" distribution of VMs of all application types

on the PMs. It should be noted that as the application types

increase, perfectly uniform balance becomes harder to acieve.

Therefor, in our solution, we focus on minimizing the cost

while achieving a balance as close to "uniform" as possible.

186

The cost of a transfer is determined by the number of transfers

of VMs. Each transfer of a VM from one server to another is

a costly operation and the goal is to minimize the number of

such transfers. Thus, our objective function is to minimize the

number of transfers of the VMs while achieving an as-close­

to-balanced distribution of the VMs on the PMs as possible.

In a natural variant of the problem, the costs of transfers of

a VM from one PM to another may depend on the VM (and

the original and destination PMs) in question. This can be

thought of as the non-uniform version of our main problem.

We formulate the VMSpreader problem as a Mixed Integer

Program (MIP). A mixed integer program is a mathematical

program where some of the variables are forced to be integral,

while some others may have relaxed constraints on them (for

instance, 0 :s; x :s; 1). Since integer programs can encode NP­

hard problems like Vertex Cover, solving general MIPs in

polynomial time is expected to be hard. A general reference

for integer and linear programming is Schrijver [9J.

A greedy solution approach will work easily only if one

service type is present, but with multiple service types the

problem is significantly harder. Another reason for not adopt­

ing a greedy heuristic is the following: while a greedy heuristic

is computationally viable, the quality of solutions it produces

might be much worse than the optimal number of transfers re­

quired to bring about balance. Also we make two observations

- (1) new application suites are procured rather infrequently,

and (2) the cost of transfers is usually high. Therefore, instead

of using a greedy approach which might be computationally

faster, we conclude that it is preferable to opt for a better

quality (but computationally intensive) solution as provided by

the MIPs, against a worse quality but computationally viable

procedure (greedy approach).

In typical application farms, a transfer is an expensive

operation - thus one would like to optimize this while main­

taining balance. This is precisely what we aim to achieve

by solving the MIPs discussed. A relevant point is that new

application suites are procured rather infrequently, so it might

be preferable to opt for a better quality (but computationally

intensive) solution as provided by the MIPs as against a

worse quality but computationally viable procedure (greedy

approach).

A. Problem Assumptions

Prior to stating the problem using notation, we state the

assumptions associated to the parameters and variables. It is

assumed that a single VM cannot be hosted on multiple PMs

since partitioning a VM into multiple parts is infeasible. It is

also stipulated that when multiple VMs are allocated on a PM

then all the necessary resources (like CPU, memory, network

bandwidth) must be available. In our constraints, we capture

the resource availability using a single variable for simplicity.

The size of a VM is stated in terms of physical CPUs required.

Since micro-partitioning [lOJ allows fractional CPU allocation

to a VM, it is possible to have fractional allocation for a VM.

Another point to note is that, each PM may have a super­

visor VM, called VIO, for which some resource has to be

allocated. It is also possible that a PM is not perfectly packed

at the beginning : this means that the total amount of resource

of all the VMs (in the original configuration) on the PM may

not consume the entire available PM resource.

Before we proceed, let us state the parameters of our

problem. We will let M denote the total number of VMs,

and let N denote the number of PMs, where M ;::: N. Let

TY denote the set of Types of the virtual machines. Each

Type denotes one multi-tier application. In the rest of the

discussion, the index i will be reserved to range over Virtual

Machines (VM); the index j will be reserved to range over

Physical Machines (PM); and the index k will be reserved for

Types (TY), unless otherwise explicitly stated. We also denote

the resource capacity of the PMj as Resourcej, and the size

of the VMi as Sizei.

There is also an initial configuration of the VMs on the

PMs, which lists the set of VMs (along with their types) on

each PM.

B. Hardness of the VMSpreader problem

In the following, we pinpoint the hardness of the VM­

Spreader problem. We will distinguish between several ar­

guably natural cases of varying complexity. Each case in the

following will be parametrized as below:

• The number of VM types k.

• The number of PMs N.

• The resource capacity of each PM.

Let us start off by considering the (apparently) simple case

of k = 1, and N = 2. Furthermore, suppose that both the PMs

have the same size. We reduce the (weakly) NP-hard problem

of Parti tion to this case [I1J. To elaborate, let us consider

an instance of the Part it ion problem: we are given n

numbers al,a2,'" ,an, and the Partition problem is to

decide whether there is a partition of the n numbers into 2
(disjoint) sets such that the sum of the numbers in one set is

equal to the sum of the numbers in the other. This is one of

Karp's original list of 21 NP-complete problems.

We reduce the problem instance above of the Partition

problem to a problem instance of the simple case of our

VMSpreader problem: we will have n VMs of Type 1 on

the first PM, with sizes aI, a2, ... , an and the second PM

is empty. Also let the capacities of the two PMs be equal to

Li ai· Then there is a way to perfectly balance the VMs on

the 2 PMs if and only if there is a solution to the Part i tion

problem. Thus this simple case is already NP-hard. However,

the Partition problem is weakly NP-hard: this implies

that for a;'s that are of magnitude polynomial in the input

size (i.e. n), there exists an efficient (viz. polynomial time)

dynamic programming solution for the Part it ion problem

[I1J. Given a single type of VMs, we can easily provide

a modified dynamic program to show that the case under

consideration (k = 1, N = 2) may be efficiently solved

in pseudo-polynomial time *. Details are omitted because of

space considerations.

*For details of pseudo-polynomial time algorithms, strong/weak NP­
hardness, refer to [11]

187

We proceed to consider the situation where there are N PMs

(instead of 2 as in the above case). We reduce the (strongly)

NP-hard problem of 3 -Part it ion to this case. An instance

of the 3-Partition problem consists of 3m integers (for

a number m), and the problem is to decide if there is a

partition of the numbers into m subsets, such that the sum

of the numbers in each subset is the same. Via a reduction

similar to the above, we can easily reduce 3 -Parti tion to

the case of N PMs. Thus, the VMSpreader problem with even

1 type (and same resource capacities for every PM) is already

strongly NP-hard!

We conclude thereby that the fully general VMSpreader

problem comprising of multiple types, and multiple PMs of

possibly varying sizes may only be harder. The strong hardness

results for the VMSpreader problem as outlined above mean

the following: Given a problem instance of the VMSpreader

problem it is NP-hard to even decide if there is a feasible

solution that achieves peifect balance of the various VM

types across all the PMs; note that we are talking only about

the basic feasibility question here, without even approaching

the (naturally harder) optimization question of minimizing the

number (or cost) of transfers.

It is thereby clear that we will have to somehow cope with

the inherent hardness of the problem in our design of practical,

actionable solutions for the VMSpreader problem.

IV. CONSTRAINTS IN THE VMSPREADER PROBLEM

We describe the constraints involved in the VMSpreader

problem. There are essentially three types of constraints: (i)

the allocation constraints ensure that any single VM is not

placed on multiple PMs; (ii) the resource constraints ensure

that after allocation, the total available resource capacity of

any specific PM is not exceeded; (iii) the Load-Balancing

constraints guarantee that the application types are spread

appropriately across all the PMs.

While the first two constraints are reasonably well-defined,

the third Load-Balancing constraints requires some qualifi­

cation. Given a problem instance with k types of VMs, and

various PMs of varying sizes, it is not instantly clear as to

what a natural definition of "balance" should be. (The reader

may note that this situation is akin to "clustering" of data

points [12], where the right notion/metric of clustering often

depends on the problem at hand.) We offer two natural notions

of balance; the motivation for these notions came from differ­

ent business scenarios. It is perhaps worthwhile mentioning

here, that the insight behind these notions of balance arose

from such aforementioned metrics for clustering. Herein, we

describe the notions of balance qualitatively, relegating the

more quantitative versions to Section V.

The first notion of balance may be summarized as follows:

Given k types of VMs, consider the fraction of VMs of any

specific type over the VMs of all types. Load balancing implies

then that, every PM ought to be assigned at most this fraction

of the VMs of a specific type. Call this notion of balance

StaticBalance.

We also consider a more delicate notion of balance. Given

any configuration/allocation of VMs on PMs consider the

fraction of (the sizes of the) VMs of any specific type on

a single PM over (the sizes of) the VMs of that specific type

over all the PMs. Then a reasonable notion of balance implies

that this fraction should roughly be equal across all types. In

contrast to the notion of StaticBalance, call this notion of

balance DynamicBalance.

The reader is urged to note the subtle difference between

the two notions of balance: the notion of StaticBalance does

not need to consider any specific configuration to decide the

fractions on each PM. The second notion of DynamicBalance

considers any specific configuration to decide the fractions

of VMs to allocate to each PM. Thus, while the definition

of StaticBalance does not depend on the configuration, the

notion of DynamicBalance imposes a metric on the specific

configuration.

Apropos this discussion, we enumerate the desiderata for

effective solution approaches.

1) The solution approach needs to overcome the "infeasi­

bility" issues as outlined in Subsection III-B.

2) The solution approach should exploit the inherent lin­

earity of the Allocation and Resource Constraints.

3) Solutions achieved should adhere to notions of quality

of balance as described above.

Item (2) above indicates that a reasonably efficient way to

solve the problem would be to somehow linearize the Load

Balancing Constraints discussed above. This would enable us

to formulate our problem as a Mixed Integer Program (MIP),

rather than as substantially more complex nonlinear programs.

Without further ado, we proceed to formulate the VM­

Spreader problem as two MIPs, corresponding to the two

notions of balance.

V. MIP FORMULATIONS

As described in Section IV, we will consider two separate

MIPs for either notion of balance. Corresponding to the

notions of StaticBalance and DynamicBalance, we will call

the MIPs, the S - MIP and the D - MIP, respectively.

The MIPs will have some common parameters, as listed in

Table 1.

In addition to this, the MIPs also share the following

Decision Variables. A binary variable Vij indicates whether

the VM i is finally to be placed on the PM j. Thus,

Vij = 1 implies that VM i resides on PM j in the solution

configuration.

As discussed in Section IV, the S - MIP and the D - MIP

have the same Allocation and Resource constraints. We

proceed to formally enunciate these constraints, before moving

on to the MIP-specific Load Balancing constraints.

The Allocation constraints (one for each VM i):

\Ii E VM: L Vij = 1

jEPM

(1)

188

Notation

Gij

Sizei

Typei

Resourcej

Costij

Arity Explanation

i E VM, j E PM This encodes the initial

state of the machine.

Gij = 0 if the VM i
initially resides on PM j

and is 1 otherwise.

i EVM Each virtual machine has

a size associated with it.

i EVM Each virtual machine has

a "type" associated to it;
this is a symbolic string,

for ego CRM, SAP
j E PM Each physical machine

has a limit on its resource.

i E VM, j E PM A transfer of virtual ma-

chine i to physical ma-

chine j incurs a cost.

TABLE I
PARAMETERS IN THE MIPs

Thus this constraint implies that every VM i is allocated,

in the solution to precisely (a single) PM j.

The Resource constraints (one for each PM j):

Ic/j E PM: L Vij . Sizei :s; Resourcej (2)
iEVM

We proceed to discuss the cardinal Load Balancing con­

straints separately for the S - MIP and the D - MIP. In

the following, we will also consider the corresponding cost
functions for either MIP.

A. The S - MIP formulation
The Load Balancing constraints for S - MIP ensure that

every machine receives an equal proportion of each type of

virtual machine. Given a configuration of VMs on PMs, let

us consider a specific PM j and calculate the sizes that VMs

of various types should be placed on PM j. Define a parameter

Tjk for every j E PM and every k E TY that evaluates to the

number of units of VM of type k that should be placed on

any specific PM. We can compute this parameter as follows:

2:iEVM:Typei=k Sizei
R Tjk = '\"'

S. . esourcej
L..,iEVM 1zei

Given this, the constraint reads as follows:

Ic/j E PM, k E TY:
iEVM:Typei=k

Cost Function for S - MIP:

(3)

(4)

The objective function takes into account the total number

of transfers across various physical machines and aims to

mlmmlze this total. Thus the objective function IS modeled

as:

min (5)
iEVM,jEPM

Here, note that the vector of binary parameters Gij encodes

the initial configuration. We let Gij = 0 if the VM i resides on

PM j and 1 otherwise. Thus, the above cost function correctly

encodes the number of transfers (i.e. where Gij = 1).

This objective function is sufficiently generic. For instance,

if we were to consider the problem where each transfer of a

virtual machine to a physical machine has an associated cost,
then we may appropriately transform our objective function as

min (6)
iEVM,jEPM

B. The D - MIP formulation

Building up to the Load Balancing constraints in D - MIP,

we will keep a single "measure-of-balance" variable Z in ad­

dition to the other (binary) decision variables shared between

S - MIP and D - MIP listed before. The cost function will

now have two components as compared to the single compo­

nent in S - MIP. We will also have a weighting parameter (3

in order to relatively weigh the two components in the cost

function. The new constraints are as follows:

Ic/j E PM, k E TY : Z ?:

L Vij . Sizei) . (L Sizei) -
iEVM:Typei=k iEVM:Typei#k

Vij . Sizei) . (
iEVM:Typei#k iEVM:Typei=k

Cost Function for D - MIP:

min
iEVM,jEPM

(7)

(8)

Let us elaborate on the constraints given above and the extra

term in the cost function. Suppose there is a configuration of

the VMs on the different PMs that achieves perfect balance.

We essentially want a function (of the different allocations)

that is 0 precisely when this happens. Our constraints and the

Z term in the objective function are a realization of this.

Note that a solution in VijS is perfectly balanced if the

following holds for every type k:

2:iEVM:Typei =k Vij . Sizei

2:iEVM:Typei #k Vij . Sizei

2:iEVM:Typei=k Sizei

2:iEVM:Typei #k Sizei
(9)

The Load Balancing constraints in D - MIP are the lin­
earizations of the above. We consider a deviation-from­

balance term for each PM j and then we consider the

maximum deviation-from-balance across all the PMs. This is

encoded in the variable Z, which is to be thereby minimized,

along with the original objective of minimizing the number

(or cost) of transfers. We weigh these relative components

via the parameter (3: this parameter may be thought of as

the penalty for not achieving perfect balance. Depending on

the problem instance at hand, we may need to vary (3 in

order to achieve reasonably effective feasible solutions to the

VMSpreader problem.

189

C. Comparisons of the two formulations

Let us recall the three desiderata for solution approaches
to the VMSpreader problem, as outlined in Section IV. By
design, either of S - MIP or D - MIP achieves item (2)

therein. However, notice that S - MIP suffers in that, it does
not obey item (1). In fact, given the hardness results in
Section III-B, we cannot expect S - MIP to always output
feasible solutions.

For instance, consider the situation where we have two PMs
each with 5 units of resource. Let there be two VMs, one of
type CRM (of size 4 units) initially resident on PMl, while

the other VM is of type SAP (of size 4 units) resident initially
on PM2. In this case, no transfers are possible (since it is not
allowed to transfer "part" of a VM). Thus the S - MIP returns
as "infeasible".

The design of D - MIP was precisely to remedy this, via

the useful artifice of Lagrangian Relaxation. Suppose that
the variable Z in D - MIP had a hard constraint Z = 0

(encoding peifect balance). Lagrangian relaxation techniques

imply that we may relax this constraint to Z ;::: 0 and take it as
a component in the objective function, with a corresponding

Lagrangian relaxation parameter (3. Addressing item (2) in the

list of desiderata in Section IV, note that setting (3 = 00

corresponds to infinite penalty for deviating from perfect
balance; thus this leads to the (potentially infeasible) zone

of "perfect balance". Lowering (3 from 00 brings us to the
feasible zone, while setting (3 = 0 corresponds to zero penalty
for deviations from balance. An application at hand will have
to consider varying (3's; thus there is a tradeoff between quality
of balance and cost of transfers. To reiterate, this is the best
one can do, because of the hardness results in Section III-B.

However, one may now ponder as to why such a method
was not adopted for S - MIP too. The issue is that there

are quite a few constraints encoding "balance" in S - MIP,
which will all need to be taken into the objective function
with corresponding Lagrangian parameters. While we could
vary a single parameter (3 for D - MIP, this would no longer
be possible in this situation.

VI. RESULTS

Given the two MIP formulations in Section V, we can
consider solving their linear relaxations as linear programs
(LP); however the variables Viy

'S may thereby be fractional.

A typical theme in LP-based optimization is to derive a
"good" integer solution by rounding the variables (either
deterministically, or in a randomized fashion) in the LP.
A motivation for such rounding schemes is that LP's are

guaranteed to have polynomial runtimes, whereas such a
guarantee is perhaps not possible for general MIP's (under the

commonly believed hypothesis that P -I- NP). Nevertheless,
we proceed to elucidate as to why such rounding schemes

may not apply to the VMSpreader problem. While it is easy
to round the fractional variables Vij to satisfy the Allocation

constraints, we will not be able to guarantee that the rounded
variables satisfy either the Resource constraints or the Load

Balancing constraints (for either of S - MIP or D - MIP).

PM Id Resource VMs of VMs of Total
on PM Type-l (size) Type-2 (size) Utilized

Re-
source

1 16 5 (13) 0(0) 13
2 16 6 (12.5) 2 (2.5) 15
3 16 1 (2.5) 7 (12) 14.5
4 16 3 (5) 0(0) 5
5 16 0(0) 4 (10) 10

TABLE II
TABLE SHOWING THE INITIAL DISTRIBUTION OF THE

APPLICATION TYPES ON DIFFERENT PHYSICAL MACHINES

Under this scenario, we have to apply mixed integer pro­
gramming to the VMSpreader problem. We code the problem
with AMPL and use the CPLEX solver to solve the optimiza­
tion problems in S - MIP and D - MIP [13]. As mentioned
before, the issue with S - MIP is that it may be infeasible

because of the Load Balancing Constraints:

Vj E PM, k E TY :
iEVM:Typei=k

Although S - MIP appears to be inferior with regard to
the accuracy of the results, and potential infeasibilities, its

benefit lies in the faster generation of results, as compared to
D - MIP. This can also be understood from the standpoint of
the variable Z in D - MIP that considerably complicates the
branch-and-bound procedures inherent in typical MIP solvers.

Thus, while D - MIP always gives feasible solutions (subject
to suitably varying (3), S - MIP often provides fast rough-cut
solutions, which may be reasonably good for the case at hand.

We proceed to present our evaluation results based on a
typical data set from a large hosting environment. The data set
contains two multi-tier applications, denoted Type-1 and Type-
2, spread over 5 physical machines. There are 15 applications
of Type-1 and 13 applications of Type-2. The size of the VMs

range from 0.5 to 8. The size of each physical machine (PM)
is 16. The PMs are not packed to the full capacity. The split
of VMs on each PM at the beginning is shown in Table II.

Aggregate total allocation at the beginning for each type on
each PM is shown in Figure 2. It can be observed from the
figure that there are some PMs which have no VMs hosting
application of one type, leading to the skew in distribution.

We solve the optimization problem with the objective func­

tions as shown in Equation 5 and Equation 8. The solution
of S - MIP yields 5 as the number of transfers required. The
problem is solved in just 0.015 sec. The distribution of the
VMs is shown in Figure 3.

The solution of D - MIP is 8 transfers. The time taken is
529.89 sec. Noteworthy here is the difference in the striping of
the two applications found by the two solutions. The solution
of D - MIP is significantly better than that of S - MIP

in terms of striping the VM's across the available physical
resources. Figure 4 shows the distribution of VMs for the case

with 8 transfers.
The result indicates that even in instances where the

S - MIP is solvable it may not be the optimal in terms of

190

14

12

c: 10
0

�
8 (..)

.2
co

6
=>
a...
() 4

2

0

I
_Type-�

1 C]Type-2

In I
2 3 4

Physical Machine Id

5

Fig. 2. Initial aggregate allocation for each type on individual Physical
Machines

14�--�--�--�--r=�==�

I
_Type-11

12 C]Type-21

§ 10

�
8 (..)

.2
co
=>
a...

6

() 4

�

5

Fig. 3. Total size of Type-I and Type-2 applications after distribution of VMs
using S - MIP. This takes 5 transfers, but fails to achieve good balance.

load balancing the VM's, as discussed in Section V. W hile

the solution of D - MIP is typically closer to optimal, it

takes much longer to solve. Thus, depending on the business

scenario, it can be left to the user to tradeoff between a better

balanced solution and the time taken to solve.

VII. CONCLUSION

The rise in the use of Virtual Machine technology in hosting

applications in data centers present new set of challenges

in service management. Virtual servers are used for hosting

different tiers of multi-tier applications. As all applications are

not provisioned at the same time, it is common to minimize the

cost of infrastructure by hosting all the VMs of an application

on the same physical machine. This introduces a single point

of failure. Even when new n-tier application is added, the

same procedure repeats. We propose to alleviate the problem

by spreading the different tiers of the applications across

the available physical resources. We modeled the striping of

Virtual Machines as an optimization problem where the goal

is to spread the n-tiered applications proportionally across the

Physical Machines while minimizing the number of VM trans­

fers. The Mixed Integer Problem (MIP) formulation of the

14�--�--�--�--r=�==�

12 I
_Type-11
C]Type-21

§ 10

�
8 (..)

.2
co
=>

6

a...
() 4

5

Fig. 4. Total size of Type-l and Type-2 applications after distribution of VMs
using D - MIP. This takes 8 transfers, but achieves near optimal balance.

problem is NP-hard. In order to reach a solution, we proposed

two heuristics. We presented results on a data set taken from

a real data center environment to show the performance of the

solutions.

In the current approach, no restriction is imposed on the

placement of VM's from two different types on a PM.

However, one may want to prevent (for instance) all database

servers to be co-located on a PM. This can be easily incor­

porated in our formulation.

A future direction to this work would be to allow for

probabilistic failure of PM's and adjust the VM placements

accordingly. For each PM, the Mean Time To Failure (MTTF)

can be taken into account, and VM's can be preferentially

placed on PM's with higher MTTF.

REFERENCES

[1] D. A. Menasce, V. A. Almeida, R. Fonseca, and M. Marco A, "A
methodology for workload characterization of e-commerce sites," in In

Proc. of 1st ACM conference on Electronic commerce, 1999.
[2] "Amazon elastic compute cloud (amazon ec2)." [Online]. Available:

http://aws.amazon.comJec2/
[3] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, "Hey, you, get off

my cloud: exploring informatuon leakage in third-party compute cloud,"
in In Proc. of Conference on Computer and Communications Security,
2009.

[4] A. Verma, P. Ahuja, and A. Neogi, "pmapper: Power and migration
cost aware application placement in virtualized systems," in In Proc. of

Middleware, 2008.
[5] c. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, "A scalable applica­

tion placement controller for enterprise data center," in In Proc. of 16th
international conference on World Wide Web, 2007.

[6] N. Bobroff, A. Kochut, and K. Beaty, "Dynamic placement of virtual
machines for managing sla violations," in In Proc. of Integrated Network

Management, 2007.
[7] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu,

"Performance and availability aware regeneration for cloud based mul­
titier applications," in In Proc. of Conference on Dependable Systems

and Networks, 2010.
[8] "Load balancing of virtual machines." [Online]. Available:

http://Ibvm.sourceforge.net/
[9] A. Schrijver, Theory of linear and integer programming. New York,

NY, USA: John Wiley & Sons, Inc., 1986.
[10] S. Berube, "Understanding micro-partitioning," IBM Systems Magazine,

2010.
[ll] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

191

[12] A. Jain, M. Murty, and P. Flynn, "Data clustering: A review," ACM
Computing Survey, vol. 31, 1999.

[13] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming. Danvers, MA, USA: The

Scientific Press (now an imprint of Boyd & Fraser Publishing Co.),
1993.

192

