
00085

1

Abstract—In this paper, we address the problem of reducing

the occurrence of Human Errors that cause service interruptions
in IT Service Support and Delivery operations. Analysis of a
large volume of service interruption records revealed that more
than 21% of interruptions were caused by human error. We
focus on Change Management, the process with the largest risk
of human error, and identify the main instances of human errors
as the 4 Wrongs: request, time, configuration item, and
command. Analysis of change records revealed that the human-
error prevention by partial automation is highly relevant. We
propose the HEP Framework, a framework for execution of IT
Service Delivery operations that reduces human error by
addressing the 4 Wrongs using content integration,
contextualization of operation patterns, partial automation of
command execution, and controlled access to resources.

Index Terms— Change, Human Error, IT Service Support

and Delivery, Partial Automation

I. INTRODUCTION

uman error is one of the major causes of failures in
today's IT environment, impacting systems from

personal computing to global IT Service Support and Delivery
operations. Different from technical failure, human error is
more difficult to model and prevent. Due to the high potential
of business impact, organizations and research are giving
increased attention to understanding the causes of human error
and finding effective methods for preventing it.

Root cause analysis and human error are areas of
continuous focus for high risk industries such as nuclear
power and aviation. Multiple studies have been conducted
with the goal of understanding the types of mistakes people
make in order to establish barriers to prevent people from
making these mistakes. These industries are among the safest.
Manufacturing and, to some extent, services have been
focusing on Six Sigma and Lean Six Sigma as a structured
approach to root cause analysis. However, Six Sigma and
Lean Six Sigma rely heavily on the use of statistics and logical
planning and decision making, and address only a small subset
of human errors through use of Poka-Yoke techniques.

The focus of our research is on limiting the occurrence of
Service Interruptions (SI) caused by human error in the
context of IT Service Support and Delivery operations. The
difficulty of the problem stems from the characteristics of
work specific to IT Service Support and Delivery. Our own
observations and previous research [6,8,10-13.20] highlight
the high complexity, risk and stress of System Administrator
(SA) work in IT Service Delivery operations. Complexity
derives from task complexity [8,12,20], concurrent task
execution [8,11], interaction with a multitude of tools and
systems [8,11], and distributed knowledge across peers and
teams [6,12,14]. Risk and stress derive from the mission-
criticality of the supported systems and applications and
contractual agreements and their penalties for Service Level
Objective (SLO) failures. Such complex work conditions lead
to numerous instances of error, spanning from simple
command typos that cause the shutdown of the wrong server
to incorrect specification of a change request that leads to
failures of change deployment and SLA penalties.

Our study is based on observation and analysis of
operations in a very large IT Service Support and Delivery
organization, through shadowing SAs in their daily activities,
conducting interviews, and analyzing documents related to
service interruptions related to support and delivery of IT
services. We shadowed SAs over a period of six months and
conducted interviews with multiple Subject Matter Experts
(SMEs) in various locations. Our data analysis, based on
documents related to almost a thousand service interruptions,
revealed that human error can occur in any process and any
component of the IT Service Support and Delivery operations,
including help desk, incident resolution, release, and change
implementation. A significant percentage of service
interruptions are attributed to human error based on results of
root cause analysis, Further, we hypothesize that the
percentage is even larger as almost half of SIs have
incomplete root cause analysis.

In this paper, we address the problem of reducing the
occurrence of human error in IT Service Support and Delivery
operations. The scope of our work includes any type of
activity performed on the targeted IT systems as a part of
ITIL: compliant processes, such as change implementation,
backup triggering, health checks, etc. Our analysis of service
interruptions showed that even a simple health check could
lead to service interruption if executed incorrectly. The goal of
our work is to design and implement a framework for

H

Quality of IT Service Delivery - Analysis and
Framework for Human Error Prevention

L. Shwartz, D. Rosu, D. Loewenstern, M.J.Buco,
S. Guo

T.J. Watson Research Center, IBM,
Hawthorne, NY, USA

{lshwart, drosu, davidloe, mjbuco, sguo}
@us.ibm.com

R. Lavrado
Math, Computer Sciences and Engineering Division

KAUST, Thuwal, Saudi Arabia
rafael.lavrado@kaust.edu.sa

M. Gupta, P. De, V. Madduri, J. K Singh
IBM Research India, Delhi

{gmanish, pradipta.de, madduri, jaksingh}
@in.ibm.com

00085

2

execution of server/configuration item operations that can
reduce significantly the likelihood of human error. We work to
determine the framework elements that are necessary to
achieve this goal and specifically focus on change
management, the process with the largest risk of human error
based on our study and related work [8, 10-13].

Change operations affect all the components in an IT
environment, such as servers, networks, databases, and
applications, with granularities that range from modification
of a single OS configuration parameter to delivery center
relocation. In many instances, changes have a high risk for the
enterprise, where the smallest human error can cause
widespread service failures. From the study of numerous
instances of human error and discussions with SMEs, we
identified four types of functional manifestation of human
error that lead to erroneous execution of change and release
operations: wrong request, wrong target, wrong time, and
wrong command. These four ‘wrongs’, henceforth named the
4 Ws, guide our search for novel techniques for reduction of
human error occurrences.

Towards this end, we analyzed over 200,000 change
requests performed over 2 years in our target IT Service
Delivery organization in order to understand the type of
change actions that are performed most frequently. For the
identified categories, we considered the applicability of
automation, a method proposed by previous research for
reduction of human error for anticipated tasks [1]. Overall, the
analysis revealed that full automation can be used only for a
relative small share of changes. However, partial automation,
with an intertwined operation of the SA and an automation
script, can be used for a reasonably large share of changes.
Only very few of the changes could not be automated to a
relevant extent, such are the hardware changes.

Based on these insights, we propose the HEP Framework,
which comprises the elements to help reduce the occurrence of
each of the 4 Ws. First, to address ‘wrong request’, the
framework mandates tools for catalog-based specification of
change requests and customization based on organization or
workgroup specific parameters. Second, to address ‘wrong
time’ and ‘wrong CI’, the framework includes tools that
moderate the access of the SA to the target CIs at approved
times. Third, in order to address ‘wrong command’, the
framework includes tools for Human-Supervised Change
Implementation, namely the execution of change
implementation scripts in a partially automated approach. The
role of the SA is to assess the correctness of automated
execution of change actions based on automatically
customized scripts. As a result, we submit that the likelihood
of human error diminishes significantly.

The work presented in this paper differs in many respects
from previous research related to human error in general and
to IT Service Delivery in particular. Human Factors research
developed a multitude of models for characterization of
human error, taking into account a large variety of factors such
as cognitive, procedural, and organizational. Our work
characterizes human error with respect to the functional
impact as an enabling step for identification of best strategies
and methods for error prevention. Related to IT Service
Delivery, previous work has characterized the complexity of
SA activity and proposed tools to support the SA activity in
general, aiming primarily to improve productivity. The
framework proposed in this paper is specifically focused on
change and release management and integrates a multitude of

‘Wrong’-driven methods in order to provide good coverage
for reduction of human error,

Another contribution of the paper is the novel
categorization of change operations with respect to the action
type, based on a very large volume of tickets. This work
brings valuable insights to change management research
community.

The paper is organized as follows. Section II discusses our
analysis on the occurrence and factors for human error and
service interruption. Section III presents the analysis for
categorization of change activities and assessment of
automation potential. Section IV presents the architecture of
the HEP framework for reduction of human error in change
management. Section V presents related work and Section VI
presents our conclusions and future work.

II. HUMAN ERROR OCCURRENCES AND PREVENTION OF
SERVICE INTERRUPTIONS

In this section we describe an analysis of service
interruption (SI) incidents and the hypothesis that we derived
from its results. Overall, service interruptions do not occur
very often in the large IT Service Delivery organization
targeted by this study. The study is based on a thousand SI
records gathered over a period of twelve months. Each record
contains details about the root cause analysis (RCA) of the SI
and a SA marking of the cause, which may reference human
error. Due to privacy concerns, a detailed description of the
data is not provided.

Our analysis of the SI RCAs revealed that 53% of SIs did
not have sufficiently detailed or complete RCAs to enable us
to conclude with confidence the relationship to human error.
In the SA marking of the cause, only 3% of SIs were marked
as related to human error. Conducted surveys revealed that
there is a significant difference between number of errors that
caused by human and SA markings. It suggests that SAs have
the tendency to classify human-related errors under other
categories, mainly because of the ambiguous taxonomy used
for classification in their organization. This finding led us to
hypothesize that some of the 53% SIs with incomplete RCA
were also caused by human error.

We found existing quantitative measures, such as error
rates, to be inadequate and even misleading without additional
information. Detailed and consistent descriptions of the
conditions that led to human errors are critical for
understanding the incidents and for driving the proposal for
how to avoid future instances. In our case, we found no
pattern to the conditions leading to human errors. Neither the
user nor the type of change leading to the SI correlated with
error rate. Therefore, we established a working hypothesis
that the occurrence and frequency of human errors depends
more on the interaction with the environment than on any
stable, inherent characteristic of the SA or of the task. A
methodology for Human Error Prevention has to be based on a
theory of the interaction between human performance
variability and the situational constraints.

We hypothesized that the rate of critical human errors in IT
Service Delivery could be substantially reduced through
changes in environmental factors. This hypothesis drew
from a retrospective analysis of incidents. As part of this
analysis, we analyzed RCAs and SI investigations and
identifed causes in order to extract actionable proposals for a
Human Error Prevention framework. For instance, we

00085

3

considered the current training procedures and derived
augmentations necessary to avoid human errors caused by
inadequate training in the future.

Further, we performed a partial prospective analysis on the
evaluated data and errors and analyzed the exposure to risk as
part of a feed-forward loop. We propose that future work
concentrate on prevention of SIs caused by four types of
human errors – 4 W’s: wrong request, wrong target, wrong
time and wrong command.

III. ANALYSIS OF CHANGE ACTIVITIES
This section presents an analysis of over 200,000 change

records collected over two years at a very large IT Service
Support and Delivery organization. The goals of our analysis
were the categorization of change activities and assessment of
their potential for automation. We considered two types of
automation: full and partial automation. We marked an
activity for full automation if it could be performed
completely without human intervention after being triggered
by SA (autonomic execution). An activity was considered to
be partially automated if its execution required an SA’s
intervention in one or more of the execution steps. For
example, a patch installation that was triggered by an SA and
completes without any additional SA actions was a fully
automated activity. A database update that involved the SA
running diagnostics and providing some of the data collected
to an update scripts was a partially automated activity. A
change activity was ‘manual’ if one could not automate it in
given execution environment. For example, adding a hard disk
to a system would be manual task for a physical system.
Although the same task could be automated in a virtual
environment, we marked this activity as manual (not
automatable) because it required manual labor in the
environment for which this request was received.

This section starts with a description of the ‘change ticket’,
which is the data descriptor for a change operation used in the
change management process of the target organization. Next,
this section presents the method and the results of our
classification of change operations. Finally, this section
presents an analysis of the applicability of partial automation.

A. Data Model
 In the change management process, details about the
content and execution of every change request are represented
as a ‘change ticket’ and stored across multiple database tables.
Table I illustrates a small subset of the attributes of a change
ticket. For instance, ‘description’ captures the free text
description of the request with details about the high-level
operations to be performed and references to the configuration
items (CIs) involved in these operations. Similarly, ‘type’
captures a business-specific categorization with respect to the
type of components involved in the operation, such as
Application, Software, Network, Hardware, Environment and
Operation. The ‘risk’ attribute captures a business-specific
categorization with respect to disruption that the execution of
change implementation can have on the overall activity. The
change ticket also captures a characterization of the request
completion, such as ‘installed’ (i.e., action performed),
‘partially installed’, ‘canceled’, or ‘back-out’.

B. Model of Change-Related Activities
The goal of our analysis of change tickets was to create a

model of the activities performed by SAs related to change
implementation. We modeled an activity as a pair of (1) type
of action, such as ‘configuration change’, ‘restart’, ‘reboot’,
‘update’, ‘relocate’, and ‘maintenance’, and (2) type of CI,
such as hardware, software, OS, database, application.

Note that typically each activity type is sub-divided into

lower-level activities. For instance, a ‘configuration change‘
action for a ‘database’ CI comprises the following steps: (1)
determine access details for the database, (2) connect to the
database, (3) verify the current status of the target
configuration parameters, (4) change configuration parameters
to the requested values, (5) verify that the changes are applied,
and (6) verify that the system is performing properly. For the
purpose of this study, we did not target the classification of the
lower-level activities, yet we used related knowledge to assess
what types of human error could occur in change

implementation.

Extensive analysis of the set of change ticket revealed that

structured attribute values do not provide enough information
to model the change activity to a sufficient depth to be useful
in predicting likely human error types. As a result, the basis
for our classification was the free-text value of the

TABLE I
SAMPLE ATTRIBUTES OF A CHANGE TICKET

Attribute Value

CHANGE_ID 127550
DESCRIPTION Change the password on the probe
COMPLETION_CODE INSTALL
TYPE SOFTWARE
RISK MINOR
START 03/01/06 11:04 AM
CLOSE 03/01/06 01:04 PM

TABLE II
CHANGE ACTION CATEGORIES

Action Category % of Tickets

DB OPERATIONS 11.09%

FIX - CHANGE 9.87%
INSTALL - SOFTWARE 8.00%
UNKNOWN 7.67%
UPGRADE 7.57%
SECURITY – NON PATCH 6.29%
UPDATE - ADD 5.91%
UPDATE - REMOVE 3.91%
REBOOT 3.28%
UPDATE - FIX 3.28%
MAINTENANCE - SOFTWARE 3.22%
DB – UPDATE 2.94%
UPDATE - RUN 2.54%
RELOCATE 2.37%
INSTALL - HARDWARE 2.27%
UPGRADE - PATCH 1.98%
APPLY 1.69%
UPDATE - REPLACE 1.51%
UPDATE - CREATE 1.48%
MAINTENANCE - HARDWARE 0.79%
CLOSURE 0.56%
BACKUP 0.43%
UPDATE – CONFIG 0.31%
SECURITY - PATCH 0.28%

00085

4

‘description’ attribute. Initial trials of using unsupervised
methods and supervised methods with small number of
labeled records resulted in poor accuracy because the ticket
language features a high volume of non-significant words,
(e.g., product and CI identifiers, technical terms),
abbreviations, spelling mistakes, and multiple languages.

Eventually, we adopted an incremental computer-assisted

manual classification based on keyword matching that created
a change action categorization of 44 action categories. At the
end of the classification work, 7.6% of the data remained
unclassified (‘UNKNOWN’). Table II presents the change
action categories in order of ticket percentage, limited to 23
categories with a percentage of over 0.25% due to space
limitations. The remainder of our change analysis was based
on the 84% of the records in these 23 categories.

The change tickets do not have an attribute that explicitly
describes whether the change is a hardware or software
operation. We derived this operation category from the
change type attribute as shown in Table III.

C. Correlation of Change Category and Automation

The goal of this analysis step was to estimate the fraction of

the change requests that we predict can benefit from partial
automation. Our approach was to assess which changes cannot
be (partially) automated to a reasonable extent, and which
changes can be fully automated. The estimation was based on
few observations. Regarding the changes that cannot be
automated, we observed that hardware-related changes, such
as moving cables or replacing broken hardware, require
human manual operations, which make it hard to achieve a
sufficient degree of partial automation of the change
implementation to reduce the likelihood of human error.
Table IV presents a few examples of hardware-related changes

Based on the operation categorization (Table III), we
concluded that the hardware-related changes are about 13% of

the change volume.

Regarding the changes that can be fully automated, we

observed that automation in changes is usually applied to
patches and software installation, health checks, backups and
configuration tasks. There is no attribute in the change ticket
to indicate that the implementation is automated, but
interviews with SMEs allowed us to infer automation from
certain keywords in the change ticket description, for example,
“apply fixes”, “backup”, and “hot fix”. The accuracy of the
keywords was checked against a random sample from each
category. For categories for which the keywords proved a
poor method of estimating full automation, a 2% sample of the
category was manually categorized and that was used as an
estimate for the category as a whole. Table V shows the
categories for which automation is already applied or we
considered that there is a high potential for full automation.
For each of these categories, the “% Automation” column
indicates the fraction of change tickets in that category that are
either fully automated or have a high potential for full
automation. Overall, we determined that 28% of all changes
have potential for full automation. Change tickets that were
not judged as either having a high potential for full automation
or not automatable are considered “partially automatable”.

TABLE III
 CI TYPE CATEGORIES

Change Type Attribute
CI Type
Category % Of Tickets

APPLICATION SOFTWARE 42.25%
SOFTWARE SOFTWARE 31.70%
NETWORK SOFTWARE 13.12%
HARDWARE HARDWARE 6.95%
ENVIRONMENT HARDWARE 3.76%
OPERATION HARDWARE 2.19%

TABLE IV
SAMPLE OF HARDWARE-RELATED CHANGES

Description Action Category

Installation of new IPM printers INSTALL - HARDWARE
Replace broken disk MAINTENANCE - HARDWARE
Move out two servers from A UPDATE - REMOVE
Memory Install INSTALL - HARDWARE
Move Fiber Cabling from A to B RELOCATE
Replace hardware MAINTENANCE - HARDWARE
Power cable cleanup MAINTENANCE - HARDWARE
Power install on 1st floor INSTALL - HARDWARE

TABLE V
 CATEGORIES WITH HIGH POTENTIAL FOR FULL AUTOMATION

Category % Automation

INSTALL - SOFTWARE 75.00%
REBOOT 69.30%
UPDATE - FIX 96.00%
MAINTENANCE - SOFTWARE 95.00%
UPGRADE – PATCH 82.17%
BACKUP 86.32%
UPDATE – CONFIG 86.82%
SECURITY - PATCH 85.82%

Fig.1. Full automation potential of the most common
categories

00085

5

Figure 1 compares the percentage of full automation with the
total ticket percentage for the category. Overall, based on the
analysis of change actions, we concluded that 58% of the
changes across 13 categories were candidates for partial
automation; while not fully automatable, these changes
comprise a reasonable share of steps that can be automated
while an SA has to intervene in the process and execute some
steps manually. Thus, 58% of changes implementation plans
can be reviewed and improved such that the likelihood of
human error is reduced (Fig. 2).

IV. HUMAN-SUPERVISED PARTIAL AUTOMATION

In this section, we propose a novel architecture and design
principles for a tool workspace that facilitates the proactive
prevention of service interruptions due to human errors. The
proposal builds on the insights regarding the complexity of SA
work presented by previous research [7-12] and our analysis
of system interruptions, human error, and change activities in
a large IT Service Support and Delivery environment in
sections II and III.
 The process implemented for partial automation is
illustrated in Figure 3. It is based on the interactions of (1) a
single, web-based interface for the SA into all service delivery
processes (WISH), (2) data integration across all service
delivery data, sources (ADI), (3) contextualization of the
operations (COI) based on best practices and configuration
information, (4) coordinated execution through dispatching
(DI) and (5) controlled access to the targeted infrastructure
(ACI).
 An overall flow of the interactions comprises the following
steps: A change request is entered into an incident, problem
and change (IPC) system. This triggers an alert in the Dispatch
system (DI). DI collects the necessary data though the Data
Integration Adapter (ADI) and prepares the dispatch decision.
When the request is dispatched, the assigned SME is notified.
He or she retrieves the request details in the Web-based
Interface (WISH) and accesses COI for customization based
on existing artifacts for similar past changes. The newly
created customized artifact is uploaded to COI and tagged
with the change id. This triggers a request for dispatching of
the change to an SA. The dispatcher assigns the change to an
SA, who uses WISH to access the customized artifact
associated with the change. When SA decides to implement

the change, the WISH execution engine checks the access
validity through ACI queries and triggers a log-in procedure
into the targeted system.

A. Adaptation and Integration of Data Sources

The Adapter component (ADI) integrates content across
all of the data sources in IT Service Delivery, including the
business model, IT Service Management (ITSM) systems,
users, etc. While not directly responsible for human error
prevention, ADI is the primary data input component and
performs functions that are critical to all downstream human
error prevention components. For the purposes of this
paper, the business model consists of information about how
services have to be delivered. It includes contractual
agreements that define the relationship between the service
provider and the customer, such as service level agreements
(SLAs) and the catalog of exposed services, as well as
business process information such as the catalog of internal
services, technician roles, and internal policies.

 A key function of the Adapter component is to combine
the data from multiple heterogeneous IPC systems into a
single data schema so that they can be easily consumed by
downstream components. Where it is necessary to draw a
distinction between the data actually in the IPC systems and
their representation in the combined data schema, the
former are named “tickets” and the latter “work orders”. A
ticket includes information about:
• The type of incident or change as defined by a catalog

of exposed services,
• Location information, including servers, networks, or

databases to be affected by change or related to
incidents,

• Reported severity, which together with SLAs affect the
priority and scheduling of services, and

• Scheduling constraints beyond those specified in SLAs.

B. Coordinated execution through dispatching
 The dispatcher is a person or group responsible for
assigning work orders to SAs who then diagnose and correct
the incident or problem, implement the change, or otherwise
provide the service requested through the IPC. Most
dispatchers work with a service delivery team composed of
technicians with shared expertise in a single technical area,
such as DB2 database or AIX operating system administration.

Fig. 3. Partial automation process sequence diagram

Fig 2. Automatable changes

00085

6

Each type of internal service is associated with one team,
although a single team may be responsible for many service
types. Where there is a direct relationship between an external
service and a corresponding internal service, work orders can
be routed automatically to the appropriate service delivery
team and its dispatcher. More complex projects require
division into multiple internal services and cooperation among
multiple dispatchers associated with multiple service delivery
teams to support these services. A dispatcher may break an
internal service into one or more tasks depending on the
business model and assign these tasks to one or more SAs.
The tasks may explicitly have a required order of
implementation (e.g., configure the server before placing it on
the network). Different technicians within a team may have
different levels of training in different types of tasks.
Assignment may require judgment weighing competing
responsibilities, such as completing tasks efficiently vs. cross-
training. The dispatcher annotates the work order with
information about the schedules for time frames during which
work is to be performed, as constrained by the technician
assignments, ordering restrictions, SLAs, and customer
scheduling constraints.

Dispatching is a complex process that can itself be a source
of human error. Although mitigating this source of error is
beyond the scope of the paper, there is reason to believe that
partial automation can be applied to it as well. For example,
an explicit model of technician skills, availability, and
workload will make it possible to suggest appropriate
technicians for each task while still giving the dispatcher room
to make judgments involving higher-level issues such as
balancing training requirements against efficiency.

C. Contextualization of Operations
 An important measure in minimizing human error is to

standardize the “best practice” process artifacts and provide
delivery personnel ready access to these best practices. For a
IT delivery organization, the complexity of the customers’ IT
environments and the dynamicity of the services required
render the capture, standardization, and improvement of best
practices a challenging task. In addition to capturing the best
practices, making the knowledge base easily available is an
important design requirement. Thus, there are two activities
while a change is being prepared: help the user with references
to existing changes and capture new changes and best
practices from the current change being prepared.

IBM has developed a tool, called BPMS, which provides
the capability to capture and improve the best practices. The
goal of the BPMS is to provide the IT delivery community
with a web based access to global repository of standard
processes artifacts: processes, procedures, and work
instructions including supporting documentation. BPMS
employs social computing techniques to leverage the subject
matter experts in the community to maintain the relevance and
vitality of the content. Every artifact in BPMS has an owner
who is responsible for the content and a group of reviewers
and approvers. Owners are encouraged to leverage feedback
from users for continually improving their artifacts. Process
artifacts can be linked together and to various categories, such
as the delivery catalog entry which applies the artifact and the

accounts using the artifact. These links are used to navigate
and filter artifacts to improve users’ ability to locate artifacts
of interest. Users can add to artifacts annotations which can
be typed (e.g., a variation) and restricted as applicable to an
account or group of accounts. Through annotations users can
register usage of an artifact, suggest improvements, and attach
relevant information.

In order to help the user access the knowledge-base in
BPMS, we have designed another tool, which acts like a
recommender when the user prepares a change plan. As the
user chooses a task, e.g., apply a patch on AIX, the
corresponding task stored in BPMS with matching keywords
are displayed as recommendations. The user can use the
recommendations to build the plan faster. Along with the
recommendation feature, the user is also guided to follow the
structure while preparing the work instructions. The
introduction of a structure during work instruction preparation
is essential in order to programmatically capture the insights
of the changes. The change plan creation assist tool is
currently Excel-based, and uses embedded macros to access
the knowledge-base. The details of the tool are presented in
[19].

D. Web-based interface for human – system interaction
The HEP framework provides the SAs with a web-based

interface (WISH) for performing change operations in a partial
automation approach. In a complete automation scenario, the
change is triggered automatically. The process proceeds from
the beginning to the end without human intervention. The
complete automation may not be proper in many situations
unless each step in the execution is guaranteed to be
successful. The execution of the change contains a sequence
of steps. The script for each step was written by human being
therefore the script itself possibly contains errors. Even though
the script proves to work well in one target, it could fail in a
different target for the same change due to the different
configuration or some other changes in the environment.
Running the script step by step with human supervision (a
partial automation) could improve the success rate. During the
execution, the SA watches each step and is alerted only on
exceptions or errors, The SA then makes a decision whether to
continue or abort the execution to prevent worsening the
situation. In a partial automation scenario, the SA interacts
with the system through the Web GUI during the execution of
change operations.

In this section we address this scenario of human-system
interaction. The IPC system holds the change record
describing the details of the work order. The request
description includes the instructions for change as resulted
from the contextualization of operations and the related
servers and components subject to change. WISH collects all
information related to the change request including the
contextualized work instructions, assigned SA, and scheduled
time window based on the work order and server or
configuration item references. Because the scheduled start
and end time are associated with each change request, the
assigned SA can only start executing a ticket if it is within
valid time window. The execution is triggered by accessing
the work order using the web-based interface. During this

00085

7

time, the interface presents concurrently the instructions to be
executed and the execution context on the target server, which
in the current implementation will run the UNIX operating
system. The latter is presented in a customized “putty”
window. If there are multiple servers to be accessed as part of
the change, separate putty windows are invoked for logging
into each server.

The user logs in through the putty windows to each server.
Once the authentication succeeds, the SA requests (from the
WISH dashboard) the execution of the next command. Upon
SA action, the command is transferred to the putty window for
execution on the target server. The GUI is a combination of
JavaScript and applet technology. The JavaScript called as a
result of pressing the “next command” button passes the
command string to the putty window. The user can provide
additional parameters to the command if required. For
example, if the command issued is “kill” then the argument for
this command is the process identifier obtained manually from
the output the previous command “ps”.

 Another component of the command execution tool is a
server-side component responsible for maintaining the state of
command execution. The component is implemented as an
application running on portal software. All the commands
executed by the SA as well as the output of the commands are
automatically logged. After the work order execution
completes, the audit logs are uploaded to a database for later
analysis.
 When a work order execution has to be aborted (e.g.,
because of incomplete command or change of the plan), the
changed description and the status of the execution (e.g., next
step) are stored for future reference using an upload interface.
As a result, the work order state is switched back to
executable, allowing the SA to resume the execution. The
changes to the work order performed during change
implementations are applied by an SME that is identified in
the change ticket. All plan change actions are audited in order
to assess if an error occurred and what caused it. Further
details of the system can be found in [18].
 In the general, the design of the web-based interface WISH,
integrating across services and content, follows the principles
developed by HCI experts [17] in order to prevent errors. For
instance, the GUI is the first gate to block human errors into
the IT system. Also, the GUI offers help messages and
warnings in order to alert the user on the risks of his actions.
However, the distinction between necessary and excessive
help should be considered. Good feedback with suggested
actions for error recovery or even error prevention highly
benefits the overall user experience.

E. Controlled Access
The goal of the Access Control component (ACI) is to prevent
‘wrong target’ errors. The control of access to a targeted
system is directly taken from the human user and placed on
the component, which maintains information on the
‘eligibility’ of a given user to access a particular target. In our
implementation, the SA has access to a system only in the
context of a specific operation during the scheduled time for
the operation. For example, typically, an SA has read-only
access to a system that he is responsible for maintaining. His

or her permissions change to include write and execute when
there is an active request related to the system he or she is
maintaining. ACI queries the data sources through the Adapter
periodically to get current information on the necessary
changes to access level. Collectively with WISH, which
monitors user actions, ACI also addresses ‘wrong time’ errors
by revoking user’s access to the target when the time-window
is closed.

V. RELATED WORK

A. Human Factors Research
 With the goal of improving operational performance and
safety, Human Factors research tries to understand why and
how accidents or errors occur and how they can be prevented.
Many models for characterization of human errors have been
developed, most of them focusing on the conditions that
triggered the error. Such models relate to (1) individual, task,
or organization, (2) individual vs. system [2], or (3)
insufficiency of knowledge, skills, or rules [6]. Typical
prevention is based on training, well designed interfaces,
detection and recovery from procedure failures, and
automation [1]. In our work, we depart from traditional
Human Factors research and consider a functional
characterization of human error into the 4 Wrongs, which
identify actionable items that drive our solutions for human
error prevention.

B. IT Service Delivery: Work Environment and Tools
 A significant body of previous research has focused on the
work of system administrators and the effectiveness of their
tools with respect to productivity and risk reduction. While not
specifically interested in preventing human error, many of the
proposed tool design principles contribute to this end.
 The studies in [7,8,10,11,12] are based on a series of field
studies in large corporate data centers that reveal the
challenging, human error-prone work environment. The
contributing factors [11] include multitasking across
interleaved and parallel workflows, tool command languages
that cannot prevent small types from triggering high-risk
procedures, diversions caused by problems that arise outside
the scope of the initial problems, and the multitude of tools
that have to be used by SAs to accomplish their tasks. The
methods used to prevent errors include planning and
rehearsals, customization and automation with tools they build
and trust.
 Haber [10] considers ‘sensemaking’ in the context of SA
activities as the integration of information about all of the
components relevant for the task-at-hand. [7,10] identify the
large volume of information and the distribution across
multiple sources, people, or databases. [7] proposes to address
this complexity with a distributed cognition approach focused
on (1) the information flow among participants in the process
and sources of information and (2) how the information flow
affects how information is received and used.
 [8] highlights the disconnect between SA tools and the
complexity of the managed systems and of the tasks
performed, the risk and stress derived mission critical
applications, the ongoing development of script and tools.
Recommendations to improve the tools used by SAs span
from standardization of configuration and terminology, tool
integration, support for validation of configurations, easy to
use interfaces, support for situational awareness, online and

00085

8

offline collaboration. While [8] is focused on tools to manage
individual system components like operating system, web
applications or databases, we submit that similar principles
proposed should be expanded to frameworks for
implementation of IT management processes, such as the HEP
Framework, in order to achieve low human-error levels.

 [12] addresses the challenges of managing the complex IT
Service Delivery environments through automation. Field
studies reveal that automation tools need to support (1)
rehearsal and planning, (2) maintaining situation awareness,
and (3) managing multitasking, interruptions and diversion.
For instance, automated tools should allow building test
systems or to quickly undo changes. The study observes that
automation is likely to reduce situation awareness and propose
a visualization approach that mitigates this limitation. Finally,
automation increases the likelihood of multitasking and
diversions, thus increases the risk error. The limited
applicability of automation to rather simple tasks and the
negative impact on ‘system visibility’ is also addressed in [4].
Our analysis concurs with this view, showing that automation
is not likely applicable to a large set of change operations in
an IT Delivery organization. We propose the use of partial
automation as a way to expand the human-error reduction
beyond the limitations of automation. With the SA guiding the
execution of automated steps, partial automation in change
implementation is less prone to have negative effects due to
the mismatch of mental and computer models, such as in
human-computer cooperative problem solving [4].
 Previous work proposed a variety of tools to support SAs in
management of personal activity [13], of structured and
unstructured work activities [14] such as change management,
of change scheduling decisions [15, 16], and of automated the
software installation process [17]. The HEP framework
proposed in this paper fosters tool integration on the basis of
foundational elements that prevent the 4 Wrongs.

VI. CONCLUSION
We have presented an analysis of a large volume of change

tickets. Using our categorization of change operations with
respect to action and operation type, we have gained insights
into how human errors occur and how these errors could be
reduced through partial or complete automation. We believe
the lessons drawn from this analysis have general application
in change implementation and the analysis itself has general
application to other problems in IT Service Support and
Delivery.

We have proposed a “Wrong-driven” framework, the HEP
Framework, for reducing human error in the implementation
of resolutions for IT change requests. This framework
proposes specific tool design approaches to reduce the
occurrence of each of the “4 Wrongs”:

• catalog-based specification of change requests
parameterized by organization or workgroup to
address “wrong request” errors,

• control of SA access by CI and change window to
address “wrong CI” and “wrong time” errors,

• partial automation of change implementation scripts
to address “wrong command” errors.

In future work, we expect to test our framework in the field to
determine whether it does reduce the “4 Wrongs” as predicted
by our analysis in section IV.

REFERENCES
[1] A. B. Brown. “Oops! Coping with Human Error in IT Systems,” Queue.

vol. 2, no. 8, Dec. 2004.
[2] J. Reason. “Human Error: Models and Management,” BMJ, 320: 768-

770, 2000.
[3] D. Patterson et al. Recovery Oriented Computing (ROC): Motivation,

Definition, Techniques and Case Studies, Computer Science Technical
Report UCB//CSD-02-1175, U.C. Berkeley, 2002.

[4] S. A. Guerlain, P. J. Smith, S. M. Gross, T. E. Miller, J. W. Smith, J. R.
Svirbely, S. Rudman, Critiquing vs. partial automation: How the role of
the computer affects human-computer cooperative problem solving.
Human performance in automated systems: Current research and trends,
pp. 73-80. Lawrence Erlbaum Associates, Mahwah, NJ, 1994.

[5] S. Dekker. Ten Questions about Human Error: A New View of Human
Factors and System Safety. Mahwah, NJ: 2005.

[6] J. Reason. Human Error, Cambridge University Press, 1990.

[7] P. Maglio, E. Kandogan, E. Haber. Distributed Cognition and Joint
Activity in Computer-System Administration. Springer, New York, NY,
2004

[8] E. Haber, J. Bailey. Design guidelines for system administrator tools
developed through ethnographic field studies Proceedings of the
Computer-Human Interaction for the Management of Information
Technology (CHIMIT '07). Cambridge, MA, USA, 2007

[9] ITIL. Available: http://www.itil-officialsite.com/home/home.asp
[10] E. Haber. Sensemaking Sysadmins: Lessons from the Field,

Sensemaking Workshop at ACM CHI, 2005.
[11] R. Barrett, E. Kandogan, P. Maglio, E. Haber, L. A. Takayama, M.

Prabaker. Field Studies of Computer System Administrators: Analysis of
System Management Tools and Practices CSCW'04.

[12] R. Barret, P. Maglio, E. Kandogan, J. Bailey. Usable Autonomic
Computing Systems: the Administrator’s Perspective Autonomic
Computing 2004.

[13] V. M. Gonzalez, L Galicia, J Favela. Understanding and supporting
personal activity management by IT service workers Proceedings of the
2nd ACM Symposium on Computer Human Interaction for Management
of Information Technology (CHIMIT ’08).

[14] J. Bailey, E. Kandogan, E. Haber, and P. Maglio. Activity-Based
Management of IT Service Delivery, CHIMIT 2007.

[15] :J. Sauve, R. Reboucas, A. Moura, C. Bartolini, A. Boulmakoul, and D.
Trastour. Business-driven support for change management: Planning
and scheduling of changes, Proceedings of IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, 2006.

[16] L. Zia, Y. Diao, D. Rosu, C. Ward, and K. Bhattacharya. Optimizing
Change Request Scheduling in IT Service Management. SCC2008

[17] A. Keller, J. Hellerstein, J. Wolf, K. Wu, and V. Krishnan.
“The CHAMPS system: Change management with planning and
scheduling,” in Proceedings of IFIP/IEEE Network Operations and
Management Symposium, 2004.

[18] J. Nielsen, H. Loranger. Prioritizing Web Usability. New Riders Press,
Berkeley CA, 2006.

[19] Venkat Madduri, Manish Gupta, Pradipta De, Vishal Anand. “Towards
Mitigating Human Errors in IT Change Management Process,”
Proceedings of the ICSOC, 2010.

[20] L. Shwartz, N. Ayachitula, M. Buco, G. Grabarnik, S. Maheswaran, C.
Ward, S. Weinberger, "IT Service Provider’s Multi-Customer and Multi-
Tenant Environments," E-Commerce Technology, IEEE International
Conference on, and Enterprise Computing, E-Commerce, and E-
Services, IEEE International Conference on, pp. 559-566, CEC-EEE,
2007

