
Towards Mitigating Human Errors in IT Change

Management Process

Venkateswara R Madduri1, Manish Gupta1, Pradipta De1, and Vishal Anand2

1 IBM Research India, Delhi
2 IBM Integrated Technology Delivery, Bangalore, India

Abstract. IT service delivery is heavily dependent on skilled labor. This
opens the scope for errors due to human mistakes. We propose a frame-
work for minimizing errors due to human mistakes in Change Manage-
ment process, focusing on change preparation and change execution. We
developed a tool that brings better structure to the change plan, as well
as, helps the change plan creator in developing a plan faster through
use of knowledge-base and automatic guidance. At the change execution
phase, we designed and implemented an architecture that intercepts and
validates operator actions, thereby significantly reducing operator mis-
takes. The system can be tuned to vary the involvement of the operator.
We have tested the system in a large IT delivery environment and report
potential benefits.

1 Introduction

IT service delivery has seen unprecedented growth. To tackle the surge, IT service
management has become a human labor intensive industry. The strong depen-
dence on human workforce leads to several outages which can be traced back to
human mistakes [5, 3, 2, 4]. Outage in service delivery stems from several factors,
starting from hardware failures to simple misconfiguration of an application,
leading to service downtime.

This paper proposes a framework for minimizing outages, that are triggered
by human errors, in service delivery environment. We look closely at the change

management process, as defined by ITIL [1]. A typical change management life-
cycle involves: (i) a change request is raised and logged into a change request
system, (ii) an expert team reviews the problem and draws up a change plan,
(iii) designated change assignee executes the steps as documented in the change
plan, (iv) changes are validated and the change ticket is closed. Starting from

change plan preparation to change execution, the process is heavily dependent on

skills of the human workforce.

We propose a solution targeted at two levels: change preparation and change
execution. At change preparation, errors could be due to inadequately speci-
fied instructions, reuse of older change plans, and omission of instructions for
rarely used stages, like pre-validation and backout. We introduce a column-based
structure for change plan creation. An MS-Excel plugin based wizard, referred
to as TexExpeditor, helps in building a structured change plan. Standardized
structure, along with several functionalities to guide the change plan creation.



The proposed method to prevent errors during change execution is based on the
idea of intercepting operator actions. The system, referred henceforth as Facade,
checks the correct time window for the change execution, as well as, validates the
server address on which the change must be acted. The interceptor is also capable
of automating command execution by matching command outputs. Facade can
also run in supervised mode where it waits for the user to indicate successful
command execution.

In this paper, our key contributions are two-fold: we propose a standardization
for change plan creation, and provide a tool to create standard change plans; and
based on this standard template, we have designed and implemented a change
execution engine, called Facade, which can be tuned to run at different levels of
automation. In the rest of the paper, we present a broad overview of the tools
(Section 2), followed by details of the implementation. We also present a set of
results from our limited engagement with accounts (Section 4).

2 System Overview

We have developed a system that addresses the challenges of Change Manage-
ment at two levels: change preparation and change execution. In this section, we
describe the overall design of two complementary tools: TexExpeditor used for
change plan creation, and Facade used for mitigating errors during execution of
the plan.

2.1 Change Plan Creation

In most service delivery environments, Subject-Matter-Expert (SME) creates the
change plan. A change plan is usually a set of instructions in unstructured text.
Use of unstructured text leaves scope for misinterpretation during execution.
Keeping the current state in mind, the key goal of the change plan creation phase
is two-pronged: (i) to reduce ambiguity in the definition of execution instructions
in a change plan, and (ii) reduce the effort, as well as, chance of mistakes in the
creation of change plan.

We introduce a structure in the change plan to reduce ambiguity. The pro-
posed change plan is a set of tasks, with each step in the task described as
a record with fixed number of fields. The fields are <command, node to exe-
cute on, type of command, comments>. To aid the process of plan creation, we
have implemented a MS-Excel based wizard to guide in plan creation (details
in Section 3.1). Figure 1 shows the workflow of change plan creation and that
of new change plan template generation. During the plan creation, a user can
provide the keywords describing the change, which will pull out relevant plans
for reference.

2.2 Change Plan Execution

At present, a change plan is written in an unstructured manner leading to mis-
interpretation of the instructions, and errors in execution. Other sources of error



Fig. 1. Steps in Change Plan Creation us-
ing TexExpeditor tool Fig. 2. Overall Architecture of Facade

in this manual mode of change execution are, (i) the user mistakenly logs into
the incorrect server and performs changes, (ii) being in a different time zone
from the target servers, the implementer may start execution at wrong change
window,

Facade execution engine is a gateway before any change action reaches the
target server, as shown in Figure 2. The ticketing system holds the change re-
quests and change plans for target servers. Facade architecture has three impor-
tant modules which makes it flexible to incorporate new ticketing systems and
new connection types. The adapters to the ticketing system perform the task of
fetching relevant tickets for display to the user. The connector module opens ses-
sions to the target hosts specified in the change plan. Since the connections are
opened automatically by reading in the hostname from the change plan directly,
this eliminates possibility of wrong server login. Before executing any change
command on the target host, the change time window is checked with the server
time to ensure that a change is restricted within its change window. In order to
make the transformation from the current state-of-the-art to a fully automated
change plan execution, we have implemented an extensible framework. The flex-
ibility provided in the semi-automatic mode is that the user analyzes the output
of a command and decides on the progress of the change, while in the automatic
mode the command is pushed to the endhost, output analyzed and the next
command is executed.

3 Design Choices and Implementation

The design choices and implementation of the change preparation tool (TexEx-
peditor) and change execution engine (Facade) are guided by several business
and practical constraints. In this section, we will present the requirements that
shaped our design choices, followed by the implementation of the tool.



Fig. 3. A typical change plan along with the wizard for creating a plan

3.1 TexExpeditor: Design and Implementation

Several factors lead to making mistakes during change plan creation. Cut-Paste

error is the classic case of reusing old plans to create new ones, and forgetting to
change a parameter in the new plan. Omission error happens when an impor-
tant field, like patch version, is omitted during plan creation. Another common
practice is to omit backout plan for simple changes, assuming there will be no
complication during change.

TexExpeditor tool forces a structure while building the change plan, as well
guides the user with recommendations. It is built on top of MS-Excel, and opens
a wizard to guide the plan creation. Six mandatory worksheets are defined:
Executive Summary, Pre-execution Phase, Execution Phase, Validation Phase,

Backout Plan, SME list. Any violation of the structure alerts the user. For ex-
ample, while filling out a sheet, if incorrect type is entered in a column, e.g. host
address does not match IP format, then an error is raised. The wizard is shown
in Figure 3. We also create a change plan store which can be searched based
on keyword. Search for a relevant plan is based on keywords. The task store
is a 3-way dictionary with keywords describing Actions, Software and Platform.
Sample keywords for Action are Install, Upgrade, Update, Modify, Patch, etc; for
Software is DB2, Oracle, Websphere, etc,; and for platform are Linux, Windows,
AIX, etc.

3.2 Facade: Change Plan Execution Engine

Several observations guide the Facade design. Complex changes often require
human intervention, and therefore, Facade must be tuned to switch from auto-
matic to supervised mode. Multiple changes could be implemented simultane-
ously. Once a change has started, Facade must ensure that no other person by
mistake accesses the same ticket; this requires maintaining session state of the
ticket. An alerting mechanism is necessary to intimate relevant stakeholders on
exception scenarios.

Facade is a web application with a web-based Graphical User Interface (GUI),
as shown in Figure 4. The web UI allows several features, viz. Role-based access



Fig. 4. Facade Graphical User Interface for executing a change plan

control, Multiple ticket execution, Failed execution handling. Different users,
like Subject-Matter-Expert(SME) and an implementer, get different views of
the ticket. Separate tabs are opened for each ticket, so that a user implementing
multiple changes can navigate across tickets. When exception occurs during a
change, Facade allows user to abort a ticket, and triggers the backout plan. It
also alerts the list of SMEs mentioned along with the ticket, and updates are
sent to the Ticketing system.

Three key building blocks in Facade framework are interface to the native
ticketing systems, the session management and interceptor modules, and end-
host connection manager. Tickets are accessed from ticketing system using web-
service interfaces. For example, BMC Remedy ARS [6] exposes web service APIs,
that is used to implement access to the ticketing database.

Once a change begins, Facade maintains a session for the ticket to guide the
user with the progress. Facade maintains the current command being executed
on the endhost, and proceeds to the next command when previous command is
successfully completed. In supervised mode, user indicates successful completion;
in automatic mode, it is detected by Facade. There are two types of commands
in a change plan, non-interactive, and interactive/text based. For the text based
commands, Facade opens a putty session to the designated endhost and allows
the user to execute the change directly on the target host. However, the chance
of an error in terms of execution on a wrong node is precluded by opening the
putty session to defined host.

The connection management to the target host is the other important func-
tionality in Facade. Since all target hosts are now accessed through Facade, this
allows the ability to control access to endhosts. If due to incorrect scheduling
of change, multiple tickets try to access the same endhost, Facade can easily
intercept and prevent. For connecting to the endhost, Facade uses the same
authentication method, like ssh or telnet, and asks the user for the credentials.

4 Results and Observations

This section presents preliminary results collected from a test engagement. The
results are indicative of the benefits of the tools. In order to understand the



benefit of TexExpeditor, we studied over 300 change requests over a period of 6
months raised for database operations team at a large telecom account. Approx-
imately 60% of the changes were repeating, where some of the major keyword
classes were dba, patch, update, database, upgrade, migration, with changing ta-
blespace in DB being the most common activity.

During change execution, Facade was useful for simple changes, but more su-
pervision was required for complex changes. Facade was able to prevent execution
of about 50% of the changes which were attempted. We prevented execution of
tickets whose change time window has not been reached, and those which were
pending approval. The web based display of the execution result is difficult to
read for the user. However, in our upcoming version, we are integrating a VT100
terminal emulator to maintain the standard look-and-feel for the user.

5 Conclusion

In the current human labor intensive IT delivery model, scope for errors due
to human mistakes cannot be precluded. We designed a framework that mini-
mizes the chance of human mistakes in Change Management process. We target
two key stages to restrict the errors: change preparation and change execution.
TexExpeditor tool introduces a structure in change plan creation, and guides
the user during change plan creation, thereby reducing the chances of making
common mistakes. Facade execution engine acts like a validation system before a
user can start executing change on the target host. It intercepts operator actions,
and allows execution only after validating the correct execution parameters, like
correct time window, correct target host. Facade can be tuned to run in a semi-
supervised mode, as well as, execute changes automatically on the endhost. We
envision that commonly occurring changes will benefit significantly from the
automated execution framework of Facade, while complex changes will involve
human intervention.

References

1. It infrastructure library. itil service support, version 2.3. In Office of Government
Commerce, 2000.

2. Theophilus Benson, Sambit Sahu, Aditya Akella, , and Anees Shaikh. A first look
at problems in the cloud. In Proceedings of the 2nd Workshop on Hot Topics in
Cloud, 2010.

3. Jim Gray. Why do computers stop and what can be done about it. In Proc of
SRDS, 1986.

4. Fabio Oliveira, Andrew Tjang, Ricardo Bianchini, Richard P. Martin, and Thu D.
Nguyen. Barricade: Defending systems against operator mistakes. In Proc. of Eu-
rosys, 2010.

5. D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do internet services fail, and
what can be done about it. In Proc. of Usenix Symposium on Internet Technologies
and Systems, 2003.

6. BMC Remedy IT Service Management Suite.
http://www.bmc.com/products/offering/bmc-remedy-it-service-management-
suite.html.


