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Abstract

Various studies have shown that OS jitter can degrade
parallel program performance considerably at large
processor counts. Most sources of system jitter fall
broadly into 5 categories - user space processes, kernel
threads, interrupts, SMT interference and hypervisor
activity. Solutions to OS jitter typically consist of a
combination of techniques such as synchronization of
Jjitter across nodes (co-scheduling or gang scheduling)
and use of microkernels. Both techniques present sey-
eral drawbacks. Multicore and Multithreaded systems
present opportunities to handle OS jitter. They have
multiple cores and threads, some of which can be used
for handling OS jitter, while the application threads run
on remaining cores and threads. However, they are also
prone to risks such as inter-thread cache interference
and process migration. In this paper, we present a
holistic approach that aims to reduce jitter caused
by various sources of jitter by utilizing the additional
threads or cores in a system. Our approach handles
Jjitter through reduction of kernel threads, intelligent in-
terrupt handling, and switching of hardware SMT thread
priorities. This helps in reducing jitter experienced by
application threads in the user space, at the kernel
level, and at the hardware level. We make use of ex-
isting features available in the Linux kernel and Power
Architecture as well make enhancements to the Linux
kernel. We demonstrate the efficacy of our techniques by
reducing jitter on two different platforms and operating
system versions. In the first case our approach helps
in reducing periodic jitter that improves both average
and worst case performance of a simulated parallel
application. In the second case our approach helps
in reducing infrequent very large jitter that helps the
worst case performance of a real parallel application.
Our experimental results show up to 30% reduction in
slowdown in the average case at 16K OS images and up
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to 50% reduction in slowdown in the worst case at 8 OS
images using this approach as compared to a baseline
configuration.

1. Introduction

OS jitter (henceforth referred to as OS Jitter) refers
to the interference experienced by an application due
to activities inside an operating system. Petrini et al.
showed that operating system interference can cause up
to 100% performance degradation at 4096 processors
in ASCI Q [1]. Our earlier work [2] showed that most
sources of system jitter fall broadly into 3 categories -
user space processes, kernel threads and interrupts (refer
Figure 1). SMT interference and hypervisor activity are
the two new additions to this traditional list of sources
of jitter as next generation petascale systems try to
exploit the benefits of simultaneous multithreading and
virtualization.

Solutions to OS jitter typically consist of a combi-
nation of techniques such as synchronization of jitter
across nodes (co-scheduling or gang scheduling) and
use of microkernels. Both techniques present several
drawbacks. Synchronization of all jitter across nodes
using periodic priority boosts requires either a global
switch clock against which all node clocks should
be synchronized or use of software techniques such
as NTP. There is also the issue of clock drift with
time. Microkernels, on the other hand, limit the use of
massively parallel systems as existing applications need
to be ported to these kernels.

Multicore and Multithreaded systems present oppor-
tunities to handle OS jitter. They have multiple cores
and threads, some of which can be used for handling
OS jitter, while the application threads run on remaining
cores and threads. The technique of leaving one of the
CPUs of a n-CPU SMP machine idle has been used
by HPC systems to handle jitter and it has proved to be
effective [1]. While, it has the disadvantage of losing out
on some compute power per node, with larger number
of cores per node, this loss is increasingly becoming
smaller in percentage terms. Similarly, leaving sister
CPU threads idle on a SMT machine is typically the



Lowest Interruption Highest Interruption Mean Total Jitter

Jitter Source (us) (us) Total Frequency | (us) %
timer 173 3397.14 164360 |  3.39 85.483 - Interrupts
eth0 4.6 22.55 764 9.04 1.062
eventsO 1.49 166.4 3148 4.07 1.97

WorkQueue
rpciod0 45.08 46.8 1 46.79 0.007 Kernel
rtasd 2272 38.23 396 | 28.21 1.716 Threads
pdflush 1.45 79.9 594 6.19 0.565
watchdog 1.31 212 1384 1.54 0.326 - Other
nfsd4 5,09 6.42 33 5.72 0.029 Kernel
nfsd 6.45 6.47 8 6.47 0.008 Threads
irgbalan 145.01 200.39 297 159.88 7.295

User level
init 1.49 30.85 595 16.82 1.538 Processes

Figure 1. Different categories of sources of system jitter

recommended way to run a HPC workload that is known
to be sensitive to SMT interference. However, in both
the scenarios it is left to the operating system to do a
good job of load balancing and scheduling all sources
of jitter on the idle threads or cores. While this works
well for user level processes, it does not work for other
sources of jitter such as interrupts and kernel threads.
Moreover, there is also the risk SMT inter-thread cache
interference and process migration.

In this paper, we present a holistic approach that aims
to reduce jitter caused by various sources of jitter by
utilizing the additional threads or cores in a system.
Our approach handles jitter through reduction of kernel
threads, intelligent interrupt handling, and switching of
hardware SMT thread priorities. This helps in reducing
jitter experienced by application threads in the user
space, at the kernel level, and at the hardware level.
We make use of existing features available in the Linux
kernel and Power Architecture as well make enhance-
ments to the Linux kernel. We demonstrate the efficacy
of our techniques by reducing jitter on two different
platforms and operating system versions. In the first
case our approach helps in reducing periodic jitter that
improves both average and worst case performance of
a parallel application. In the second case our approach
helps in reducing infrequent very large jitter that helps
the worst case performance of a parallel application.

The main contributions of this paper are the follow-
ing:

1) Design of an overall methodology that tackles
system jitter at the user level, within the operating
system kernel and at the hardware level.

2) Enhancements to Linux Kernel for handling jitter
caused by various sources of jitter - user level
processes, kernel threads, interrupts and SMT
interference.

3) Experimental validation of the overall approach

that indicates up to 30% reduction in average
case slowdown at 16K OS images for a simulated
parallel application and up to 50% reduction in
worst case slowdown at 8§ OS images for a real
application.

The rest of this paper is organized as follows. Section
2 describes the overall design and implementation of our
approach. In Section 3 we describe our experimental
methodology. Section 4 presents our experimental
results. Section 5 gives on overview of related research.
Section 6 summarizes our findings and gives directions
for future research.

2. Design and Implementation

In this section we present the overall design and
implementation of our approach. Our approach is based
on the model that most parallel applications run one
thread per physical CPU and the sister SMT threads on
that processor can be utilized for handling jitter.

As confirmed by our earlier work on identifying
sources of jitter, sources of jitter can be classified
broadly as user space processes, kernel threads and
interrupts. Interference from code running on sister
SMT threads and hypervisor activity also becomes
important as most modern commodity clusters move
to multithreaded processors and virtualization technolo-
gies. We do not discuss hypervisor jitter in this paper.
We describe these sources of jitter and the solutions to
each one of them below. Figure 2 gives an overview
of these sources of jitter and solutions to each.!

1. Typically, on Power architecture, even numbered CPUs are
referred to as “primary SMT threads” and odd numbered CPUs are
referred to as “secondary SMT threads”. In this paper, we refer to
odd numbered CPUs as “primary SMT threads” and even numbered
CPUs as “secondary SMT threads” due to implementation problems
we encountered in switching off even numbered CPUs - a requirement
for “Isolated CPUs” configuration.
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Figure 2. An overview of the various sources of jitter and our solutions to each

2.1. OS Priority: handling user space processes
and kernel threads

Most modern commodity operating systems such as
Linux, provide various scheduling policies and priorities
that can be used by an application program to control
the level of interruptions it experiences from other
user space processes and kernel threads. Linux pro-
vides 4 scheduling policies - SCHED_OTHER (default),
SCHED_RR (real time), SCHED_FIFO (real time), and
SCHED_BATCH. It also provides scheduling priority
levels from 1 to 99 (real time priorities, increasing in
priority) and 100 to 139 (normal, decreasing in priority).
Under Linux, the scheduling priority and policy of even
the kernel threads can be specified from user space. For
more details on Linux scheduling policies and priorities,
please refer [3].

Kernel threads can again be broadly classified as
belonging to two groups - those which are created
per CPU and those which are created once for an
entire OS image. Per CPU kernel threads are typically
worker threads that handle tasks that are enqueued to
their respective workqueues. Workqueues are part of
generic infrastructure that Linux maintains for com-
pleting various tasks. Various Linux subsystems can
enqueue their task requests onto workqueues which are
then handled by a pool of worker threads. These worker
threads are created one per CPU. Linux maintains
workqueues for various tasks such as writing to a block
device (kblockd), softirq handling (ksoftirqd) and asyn-
chronous 10 (aio). There is also a default workqueue

(keventd)that can be used by kernel device drivers. The
number of worker threads on a large multithreaded
system can quickly grow very large. For example, a
32 processor 2 way SMT machine will have 64 worker
threads for each of the workqueues mentioned above.
Clearly, all worker threads are not required on all CPUs
most of the time.

Note that running the application threads at really
high priority can starve other kernel threads that are
essential for the system. It has been recommended that
application threads do not run at priority levels higher
than 89 [4]. In our experimentation, the application
threads are run at priority 80 with SCHED_RR policy.
We call this configuration the “OS Priority” configura-
tion.

Linux scheduling policies and priorities have been
designed to maximize average case performance instead
of worst case performance. Many of its performance
improvement techniques decrease average time by in-
creasing the worst case time [5]. This restricts the use
of Linux for large clusters that run fine grained par-
allel applications. Hence, it is unlikely that scheduling
priorities alone can provide a solution.

2.2. Isolated CPUs: removing house keeping -
process scheduling and interrupt routing from
target CPUs

OS scheduling policies and priorities have no impact
on handling of interrupts. While, Linux allows user
space modification of a SMP interrupt affinity mask,



which controls what interrupts get handled by what
CPUs, it does not control routing of interrupt bottom
halves or softirgs.

Furthermore, while elevating an application’s
scheduling policy and priority will help reduce
interruptions from other user space processes and
kernel threads, it will not completely remove it. It
is desirable to completely remove a CPU from all
scheduling decisions and interrupt handling. Such a
CPU can be used for scheduling a process or kernel
thread only by explicitly binding the process to it.

The above features have been explored by the Linux
community in the form of isolated CPUs [6]. It consists
of a set of patches some of which are architecture
dependent and have been implemented for x86 architec-
ture. While, these features are not part of the mainline
kernel and some of them have been replaced by other
features such as scheduling domains and cpusets, they
continue to be used in some systems. We evaluated
the effectiveness of the above features and ported the
available kernel patches to POWER architecture. This
required implementing some architecture dependent fea-
tures such as interrupt routing from scratch. We call this
configuration the “Isolated CPUs” configuration.

2.3. Hardware Thread Priorities:
SMT interference

reducing

Simultaneous multithreading (SMT) allows instruc-
tions from multiple instructions streams (threads) to be
executed simultaneously in one clock cycle. This helps
in increasing system throughput as it reduces “pipeline
bubbles” that get created due to limited instruction level
parallelism. SMT implementation usually involves du-
plication of some resources and sharing of certain other
resources such as processor caches. SMT interference
refers to the side-effects of sharing of these resources
by the various hardware threads on the processor. Most
of the SMT interference comes from sharing of caches.
Various studies [7] have shown that a lot of applications
can degrade in performance under SMT due to cache
pollution.

POWERS and POWERG6 architectures implement 8
different hardware thread priority levels or SMT prior-
ities. The priority difference between the two threads
controls how many instructions get fetched from each
instruction stream per cycle, which in turn determines
the extent of SMT interference an application experi-
ences from the code running on its sister SMT thread.
Out of the 8 priorities, two priorities (0 - thread shut
down and 7 - single threaded mode) can be invoked only
by the hypervisor. Out of the remaining 6, 3 priority
levels (1,5 and 6) can only be set from within the
kernel while the remaining 3 levels (2,3, and 4) can

be set by user applications. The default priority level in
both POWERS and POWERG is 4. It should be noted,
however, that even if a user application sets a particular
hardware thread priority, the Linux kernel resets it to
the default value upon return from an interrupt context.
More information about SMT priorities on POWER
architecture can be found in [8].

We made changes to the Linux kernel and developed
a patch that contains a set of system calls that can be
used by user applications to set any hardware thread
priority from 1 to 6. Changes were also made to ensure
that these priorities are not reset by the kernel upon
return from an interrupt context. Other researchers [8]
have investigated the use of hardware thread priorities
on Power architecture to enhance the overall parallel
program performance which can deteriorate due to load
imbalance between the two SMT threads. We explore
the effect of hardware thread priorities and reduction in
SMT interference by setting the hardware priority of the
primary SMT thread to 6 and that of the secondary SMT
thread to 1. We call this configuration the “Hardware
Priority” configuration.

3. Experimental Methodology

Our experimental methodology consists mainly of the
following steps:

1) Collection of jitter traces along with kernel data
to identify sources of jitter

2) Simulating slowdown due to jitter using the traces
collected to predict slowdown at large processor
counts

3) Running a parallel benchmark on a real cluster
when available

We now describe each of these steps in detail.
3.1. Jitter Trace Collection

We first collect a jitter trace for all the configura-
tions described in the Section 2 using a trace collector
benchmark. The trace collector benchmark executes a
tight loop that reads the timestamp register or the cycle
counter register on the processor and calculates the dif-
ference between successive readings (timestamp deltas).
If the timestamp deltas exceed a particular threshold,
then it is considered a jitter event. This produces a jitter
trace. Trace Collector benchmark has been described in
detail in our earlier work [2] [9] and in [10]. While
we run the trace collector benchmark, we also collect
kernel data using the methodology described in [2].
This helps us identify the sources of jitter in the trace.

In all configurations we keep both SMT threads
switched on and the trace collector benchmark is bound
to the primary SMT thread while the secondary SMT



thread is kept idle. In all configurations, except the
Hardware Priority configuration, both SMT threads run
at their default priority of 4. This forms the Baseline
SMTON configuration. In the OS Priority configuration,
we boost the scheduling priority of the trace collector
benchmark on the primary SMT thread to 80 and run
it with SCHED_RR real time scheduling policy. In the
Hardware Priority configuration, we boost the hardware
priority of the primary SMT thread which runs the trace
collector benchmark to 6 while lowering the hardware
priority of the secondary SMT thread to 1. Finally, in
the Isolated CPU configuration, we isolate the primary
SMT thread which runs the trace collector benchmark.
As a result, no workqueues and corresponding worker
kernel threads are created on the primary SMT thread
and all interrupts (external interrupts and softirgs or
bottom halves) are routed to secondary SMT thread.

3.2. Simulating slowdown due to jitter using the
traces collected

The simulation process is based on our earlier work
on emulating OS jitter on BlueGene/L using a trace
driven approach [9]. Using the same trace driven
approach, we conduct a simulation on a smaller cluster,
where the barrier is assumed to be instantaneous and the
slowdown caused by jitter in only the compute phase is
predicted. A parallel application that executes a compute
bound loop of 1 ms followed by an instantaneous barrier
across all parallel threads is simulated. To simulate
unsynchronized jitter, the simulator starts at different
randomly chosen indices in the trace. These different
indices represent the starting point of parallel tasks (or
threads) running on different processors.

The simulator is a cycle accurate simulator that takes
as input a jitter trace, work quanta value in time and
frequency of the platform from where the trace has
been collected. It first converts the work quanta in
time into the target compute cycles in each phase by
multiplying it by the frequency value. It then computes
the difference between successive start timestamps in
the jitter trace to calculate the available application
runtime which can be used for compute cycles. At each
simulated parallel task, it keeps adding the application
runtime cycles till a jitter value is reached or the target
compute cycles for a phase is reached. If a jitter value is
reached, it is added to the total cycles consumed. When
the target compute cycles are reached, it represents the
end of a compute phase and entry into the barrier phase.
Due to jitter being introduced, different tasks will report
a different value of the total cycles consumed in each
phase, and maximum of all those values is calculated to
predict the overall completion time for that phase. The
compute time taken by the faster tasks is subtracted

from this maximum completion time to calculate the
number of cycles each task should wait (wasted cycles)
before starting the next compute phase. After the end
of N compute phases (N represents end of work or
an experiment), an average of these overall completion
times for each phase is calculated. Advantage of using
a simulator approach is that one can use it to predict
scalability at any processor count. Disadvantage is that
it does not take into account the actual barrier phase.

For the purposes of this paper, we simulate up to 16K
OS images. This corresponds to about half a million
parallel tasks on a 32 way SMP node. This is the number
of parallel tasks some of the next generation petascale
systems will support.

3.3. Running a parallel benchmark on a real
cluster

One set of our experiments was conducted on a
cluster of 256 processors (8 nodes with 32 cores each).
For those experiments, we ran a parallel benchmark
on all the 256 cores. Parallel benchmark represents
a typical parallel application with repeated compute-
barrier phases. Each processor in the cluster runs a MPI
task that executes the parallel benchmark kernel.

The main kernel represents a fixed amount of work
that is expected to finish in a given time (referred to
as quanta). Number of iterations or amount of work
required to consume quanta time is pre-calculated using
a calibration step prior to executing the kernel. The work
done can be any operation. For the experiments in this
paper, we have chosen it to be a Linear Congruential
Generator (LCG) operation defined by the recurrence
relation:

2(j +1) = (axx(j) + bymodp (1)

At the end of the compute phase, there is a barrier
call for synchronization. If an OS activity interrupts a
MPI task either during the compute phase or the barrier
phase, it slows down other MPI tasks in the cluster that
have already completed their work and have entered the
barrier call.

We measure the time (using cycle accurate timers)
spent in the compute phase, referred to as qt, time spent
in the barrier call, referred to as bt, and the total time
for completing a phase, referred to as qtbt. More details
about the parallel benchmark can be found in [9] [11].

4. Experimental Validation

In this section we present our experimental validation
of our approach. We conducted two sets of experiments
on different platforms, operating system versions and
with different number of processors.
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Figure 3. Jitter timeseries for different configurations on a 1-Processor 2-Way SMT Power5 node

4.1. Experiments on single 1-processor 1.5 GHz
2-way SMT POWERS Node

The first set of experiments was done on a 1 proces-
sor, 2 way SMT, POWERS5 node running Fedora Core
6 with kernel version 2.6.24.

4.1.1. Jitter trace collection on a single node. We
first collected a jitter trace using the trace collector
benchmark and then simulated the performance of vari-
ous configurations for a parallel application that does a
barrier after every 1 ms of computation for up to 16K
OS images. The trace collector was executed to collect a
million jitter events for each of the configurations. This
takes approximately 85 minutes for each experiment on
the system we used.

The jitter traces for the four configurations are shown
in Figure 3, where y-axis represents jitter duration in
s and x-axis represents jitter samples. The jitter trace
for Baseline SMTON configuration shows most jitter
to be around 200 ps. There are some peaks in the
800-1100 ps region, one peak around 2000 us and
some very high periodic peaks around 3500 ps that
occur once approximately every 17 minutes. Use of real
time scheduling policy and priority in the OS priority
configuration helps reduce some jitter peaks, such as

those in the 800-1100 us and the peak around 2000
us. However, the very high periodic peaks around 3500
us remain unaffected. Boosting the hardware priority of
the primary SMT thread to 6 (and reducing that of the
secondary SMT thread to 1) in the Hardware priority
configuration produces a jitter trace that is very similar
to the Baseline SMTON configuration.

The Isolated CPU configuration produces the most
improved jitter trace. In stark contrast with other con-
figurations, there are no high periodic peaks around
3500us. Even the overall average jitter level has been
reduced from 200us in the baseline configuration to less
than 100 ps.The highest peaks in this configuration are
restricted to 1000us. This indicates the high periodic
jitter peaks were being caused either by workqueue
kernel threads or by some interrupt. To find out the
answer to this question, we looked at the kernel data
for all configurations that was collected while the trace
collector benchmark was running.

4.1.2. Kernel data analysis. Using the methodology
described in our earlier work [2] we created a ranked
list of sources of jitter for each configuration. We
considered only the processes and interrupts that occur
on the primary SMT thread to be a source of jitter.
Sources of jitter for all configurations are given in Table



Jitter Lowest Highest Frequency Mean Std Dev | Total Jitter | Total Jitter
Source Interruption | Interruption (us) (us) (%) (us)
(us) (us)
timer 3.18 3459.55 167226 3.84 10.61 94.74 642829.48
eventsl 2.21 145.06 3032 5.1 10.44 2.28 15449.56
rtasd 3.69 67.62 198 44.16 4.75 1.29 8744.2
Baseline SMTON ipr 1491 58.94 143 27.33 11.16 0.58 3908.33
watchdog 1.71 6.59 1372 2.34 0.26 0.47 3204
bash 2050.12 2087.35 1 2050.12 0 0.3 2050.12
migratio 3.69 2087.35 3 688.7 1179.03 0.3 2066.1
IPI 493 9.48 46 6.19 0.75 0.04 284.53
timer 3.11 3459.96 173560 3.78 10.48 98.85 655886.55
ipr 8.39 82.91 169 28.23 12.3 0.72 4771.12
OS Prio watchdog 1.37 2.89 1386 2.03 0.23 0.42 2819.13
ethO 18.38 18.6 1 18.6 0 0 18.6
1PI 6.23 7.61 1 7 0 0 7
timer 2.85 3446.37 172664 3.45 10.55 95.27 594919.4
eventsl 1.68 58.1 3040 4.65 6.65 2.26 14125.76
rtasd 1.83 55.52 200 41.79 7.7 1.34 8358.5
watchdog 1.55 3.98 1385 2.19 0.2 0.49 3031.01
H/W Prio bash 2109 2126.23 1 2109 0 0.34 2109
ipr 12.32 48.85 54 27.64 10.82 0.24 1492.41
1PI 5.37 41.57 48 8.74 7.56 0.07 419.31
kblockd 3.86 5.85 2 4.84 1.39 0 9.69
migratio 4.37 4.38 1 4.37 0 0 4.37
timer 2.82 31.56 173823 3.08 0.25 97.46 536166.15
rtasd 4.93 54.63 397 24.5 18.15 1.77 9725.47
Isolated CPU watchdog 1.58 2.65 1387 1.93 0.1 0.49 2676.52
migratio 4.93 10.2 199 6.47 0.67 0.23 1288.35
IPI 5.49 8.2 46 6.52 0.54 0.05 299.97

Table 1. Sources of jitter for different configurations on a 1-Processor 2-Way SMT Power5 node

Kernel data clearly shows the effect of various config-
urations. The Baseline SMTON and Hardware Priority
configurations have nearly identical list of sources of jit-
ter. This is expected as the operating system is unaware
of the modified hardware thread priorities and continues
to schedule processes and interrupts as usual. The OS
Priority configuration reduces the list of sources of jitter
with respect to the Baseline SMTON configuration. It
can be seen that it is the timer interrupt that causes the
highest peaks of around 3500us in the 3 configurations
- Baseline SMTON, OS Priority and Hardware Priority.
In all these 3 configurations, jitter caused by the timer
interrupt has a wide range from 2.8us to 3460us. This
is also reflected in a high standard deviation of close to
10.5 ps.

The Isolated CPU configuration corrects this behavior
by removing the really high periodic peaks around
3500us and reducing the range of jitter caused by
timer interrupts to 2.8-32us. The standard deviation
also comes down drastically to 0.25us. As described in
Section 2, the Isolated CPU configuration removes the
workqueue kernel threads as well as external interrupts
and softirgs (or bottom halves) from primary SMT
threads. While timer interrupt top halves continue to

execute on primary SMT threads, it is evident that most
of the large jitter due to timer interrupts was caused by
large amount of processing in the bottom halves or the
softirgs. Isolated CPU configuration outperforms other
configurations by moving these high jitter softirgs to
secondary SMT threads.

Note that our kernel instrumentation provides data
only about process scheduler and interrupt handling.
There are still some jitter peaks in the 100-1000us
region that remain unidentified. There are 450 such
events out of the total 1 million events (2.5% of total
jitter). We expect these jitter events to have been caused
by the Power Hypervisor.

4.1.3. Trace driven simulation. In order to quantify
this effect of reduction in jitter, we performed a simula-
tion using the collected jitter traces. A parallel applica-
tion with a compute loop of 1 ms is simulated. Simulator
executes around 300K iterations of the compute loop.
Number of tasks are increased from 64 till 16K. In this
configuration, each task runs on a single processor node
and hence the number of tasks are equivalent to the
number of OS images. The results from simulation are
given in Figure 4. The percentage slowdown in the
average case is reduced from 44.2% in the Baseline
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Figure 4. Simulated percentage slowdown due to jitter

SMTON configuration to about 31.2% in the Isolated
CPU configuration at 16K tasks - a 30% reduction in
slowdown.

4.2. Experiments on 8 32-processor 4.7 GHz 2-
way SMT POWERG6 Nodes

Our second set of experiments was done on 8 node
cluster with each node comprising of 32, 2 way SMT,
POWERG processors running RedHat Enterprise Linux
5.2 with kernel version 2.6.27-rc5.

4.2.1. Jitter trace collection on a single node. Here
again, we first collected a jitter trace for all 32 cores
on a single node. In these experiments, a trace collector
instance ran on each core and collected approximately
half a million jitter events. This takes roughly 23
minutes on the systems we used.

The jitter traces for the four configurations are shown
in Figure 5, where y-axis represents jitter duration in ps
and x-axis represents jitter samples for all the 32 pro-
cessors (processor number represents the trace collector
task id). The first striking difference from the earlier
set of experiments is the absence of really high peri-
odic peaks in the Baseline SMTON configuration. All

configurations show most jitter to be around 100 ps and
some jitter events in the region 100-200 us and a couple
of jitter peaks around the 500-550 us region. Baseline
SMTON configuration has 4 jitter peaks around the 500
us region, whereas OS Priority configuration reduces
the number of these large peaks to 2. Isolated CPU
and Hardware Priority configurations each reduce the
number of large peaks around 500us to 1. Note that the
difference between various configurations is less stark
here as compared to the uniprocessor runs.

4.2.2. Parallel benchmark runs on a real cluster.

Since we had access to a 8 node (256 cores) cluster with
identical Power6 nodes, we ran the parallel benchmark
for this set of experiments. The nodes were connected
via Infiniband. As described earlier, the parallel bench-
mark is a typical parallel application that executes
repeated compute bound loops of 1 ms - each followed
by a barrier. We could not do an OS Priority run as
boosting the OS priority of the parallel benchmark to
80 with SCHED_RR policy seemed to halt the progress
of the program and it could never finish. It is likely
that some of the essential kernel threads (probably those
related to Infiniband) are not getting a chance to run. We
are still investigating the exact cause for this behavior.
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Figure 5. Jitter timeseries for different configurations on a 32-Processor 2-Way SMT Power6 node

In place of the OS priority configuration, we evaluated a
“Leave 1 CPU Idle” configuration, in which 1 physical
CPU is left idle so that all system jitter can be handled
by that CPU. This technique of leaving one of the CPUs
of a n-CPU SMP machine idle has been used by HPC
systems to handle jitter and it has proved to be effective
[1]. As 1 CPU is dedicated for handling all jitter, we
switch off secondary SMT threads on all the remaining
CPUs to reduce any SMT interference. This makes it
different from all other configurations which have the
secondary SMT thread switched on. This also helps us
match the configurations that have been traditionally
tried to reduce jitter. For this experiment, we left 1| CPU
idle on each node (248 cores).

We collected the maximum compute time and max-
imum total (compute and barrier) time across all 256
cores in each iteration. The parallel benchmark exe-
cutes roughly half a million compute and barrier it-
erations. The timeseries plots for maximum compute
time and maximum total time for all four configurations
- Baseline SMTON, Isolated CPU, Hardware Priority
and Leave 1 CPU Idle are shown in Figure 6 and
Figure 7, respectively. X-axis represents time and y-axis
represents the maximum compute time or maximum
total time in milliseconds.

The maximum compute time plot (Figure 6) shows

that both the Baseline SMTON and Isolated CPU
configurations exhibit some periodic high peaks which
are not visible in the Hardware Priority configuration.
The maximum peak in Baseline SMTON is around
1560us, in Isolated CPU configurations it is around
1360 us and in the Hardware priority configuration it is
around 2500 ps. These numbers match with the single
node jitter traces obtained and plotted above - as the
maximum compute time equals jitter free compute time
(1 ms or 1000 ps) + maximum jitter observed. The
“"Leave 1 CPU Idle” configuration has exceptionally
high peaks with the highest one being around 18.6 ms.
This shows that this configuration experiences a lot of
jitter even during the compute phase. Analysis of kernel
data for this configuration shows the process “pdflush”
consuming up to 15 ms. This process is used by Linux
to write out data out of its page cache to disk. This
indicates that there is some disk writing activity by some
system processes that causes “pdflush” to execute. The
kernel data for none of the other configurations shows
“pdflush” taking this long.

The maximum total time plot (Figure 7) for all con-
figurations except "Leave 1 CPU Idle” is very different
from maximum compute time plot. It shows 5 very high
peaks in the Baseline SMTON which are in the 40-
350 ms range. In the Isolated CPU configuration the
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Figure 6. Maximum compute time across all threads in each iteration for a 256 core parallel benchmark run

amplitude of these very high peaks has been reduced to
20-40 ms. The amplitude of periodic high jitter events
which were visible in the maximum compute time plot
in both these configurations, has gone up. The Hardware
Priority configuration, on the other hand does not show
very high peaks and it has only one high peak at 6.5
ms. These very high peaks appear only 4 or 5 times
out of the half a million iterations executed by the
parallel benchmark. Since these very high peaks appear
only in the maximum total time plot and not in the
maximum compute time plot, it is evident that they
are being caused during the barrier phase. This hints to
some problem either with the Infiniband fabric or with
the Infiniband driver. The fact that the high peaks get
reduced in the Hardware priority configuration indicate
that it could be due to a faulty Infiniband driver that
runs on the secondary SMT thread and causes long
delays. When the priority of the secondary SMT thread
is reduced, such delays are also reduced. Our initial
analysis of the kernel data confirms that these large jitter
are not caused by any process or interrupt. Kernel data
shows that the idle process (“swapper”) runs for equally
long duration on the primary SMT thread. This indicates
that all nodes just wait for the messages to arrive. We
are further investigating this issue.

Leave 1 CPU Idle configuration, which has SMT

switched off, has the highest total time peak around
18.8 ms. However, this configuration had the highest
compute time peak around 18.6 ms. In this configu-
ration, the high jitter experienced during the compute
phase overlaps with the high jitter experienced due to
Infiniband issues in the barrier phase.

We also analyzed the average case and worst case
performance of the parallel benchmark for the above 4
configurations using both the compute time and total
time. For calculating the worst case performance we
used the largest 1% of the values for compute time and
total time. These results are shown in Figure 8.

It can be observed that Leave 1 CPU Idle config-
uration performs the worst in all cases due to some
disk writing activity that occurs in the compute phase.
It also suffers from the disadvantage that there is no
secondary SMT thread to handle jitter that occurs due
to interrupts or processes that are bound to a given
CPU. The average case performance is similar for all
the other 3 configurations for both compute time and
total time with the Isolated CPU configuration being the
best. The worst case performance for total time varies
significantly for all 4 configurations. Isolated CPU and
Hardware Priority configurations perform much better
than the Baseline SMTON in all cases. The difference
is largest in the worst case total time performance
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Figure 7. Maximum total time across all threads in each iteration for a 256 core parallel benchmark run

due to the few very high barrier times. Percentage
slowdown in the worst case total time for Hardware
Priority run is 19%, as compared to 38% in the Baseline
SMTON run (50% reduction in worst case slowdown).
Percentage slowdown is 24% in the Isolated CPU run
(37% reduction in worst case slowdown).

Average Case and Worst Case Performance for a 256 core run
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Figure 8. Average case and worst case perfor-
mance of the parallel benchmark for the 256 core
run

5. Related Work

Impact of operating system jitter on parallel pro-
gram performance and solutions to mitigate this impact
have been studied by various researchers. Petrini et al.
showed that operating system interference can cause up
to 100% performance degradation at 4096 processors
in ASCI Q [1]. Beckman et al. observed that only
reasonably long jitter (greater than 50us) occurring
frequently enough (every 1 ms) caused any significant
performance degradation [12].

Solutions to OS jitter typically consist of a combi-
nation of techniques such as synchronization of jitter
across nodes (co-scheduling or gang scheduling) [13],
[14] and use of microkernels such as the one used
on the compute nodes of BlueGene/L [15]. Both these
approaches have drawbacks. Synchronization of jitter
requires all nodes clocks to be synchronized. This re-
quires either a global switch clock or use of some other
software technique such as NTP. Use of microkernel
limits widespread use as it requires all existing applica-
tions to be ported to those kernels. Another technique
that has been widely adopted is leaving out 1 CPU idle
out of a n-CPU node [1]. This has proved to be effective
earlier in scenarios where most of the jitter was caused
by user or kernel processes and not by interrupts and



other kernel activity.

The approach presented in this paper attempts to
either remove a source of jitter altogether or reduce
its impact by offloading it to an idle SMT thread.
Synchronization of jitter can be considered orthogonal
to this approach and can still be applied on the residual
jitter. Our approach makes use of and builds on several
features provided by the Linux operating system and the
POWER architecture. Our approach uses several bench-
marks proposed in earlier research to measure jitter [2],
[10], identify sources of jitter [2] and predict its impact
on scalability at large number of processors [9].

6. Conclusions and Future Work

In this paper, we presented a holistic approach that
aims to reduce jitter caused by various sources of jitter
by utilizing the additional threads or cores in a system.
Our approach handled jitter through reduction of kernel
threads, intelligent interrupt handling, and switching of
hardware SMT thread priorities. This helped in reducing
jitter experienced by application threads in the user
space, at the kernel level, and at the hardware level.
We used several existing features available in the Linux
kernel and Power Architecture as well made enhance-
ments to the Linux kernel. Experimental validation of
the overall approach indicated up to 30% reduction
in average case slowdown at 16K OS images for a
simulated parallel application and up to 50% reduction
in worst case slowdown at 8 OS images for a real
application.

We are currently looking at combining the solutions
presented in this paper into one single unified approach.
From our experimentation, we infer that isolating a
CPU along with modifying the hardware priority of the
SMT threads should give us the best gains. However,
this presents a trade-off which need to be evaluated
carefully. Routing of interrupts to the secondary SMT
thread assumes that they can be executed with some
level of guarantee on the secondary SMT thread. Reduc-
ing the hardware priority of the secondary SMT thread,
on the other hand, slows down the code running on
that SMT thread considerably and this can have severe
performance impact in case of essential interrupts. For
example, a parallel application that executes barriers
will observe a huge drop in its network performance
as all networking interrupts get routed to the throttled
secondary SMT thread. We are currently working on
a solution to this problem. We are also working on
evaluating our approach using real applications.
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