978-1-4244-2640-9/08/$25.00 © 2008 IEEE

A Trace-driven Emulation Framework to Predict
Scalability of Large Clusters in Presence of OS
Jitter™

Pradipta De, Ravi Kothari, Vijay Mann
IBM India Research Laboratory , New Delhi, India

{pradipta.de, rkothari, vijamann}@in.ibm.com

Abstract—Various studies have pointed out the debilitating
effects of OS Jitter on the performance of parallel applications
on large clusters such as the ASCI Purple and the Mare
Nostrum at Barcelona Supercomputing Center. These clusters
use commodity OSes such as AIX and Linux respectively. The
biggest hindrance in evaluating any technique to mitigate jitter
is getting access to such large scale production HPC systems
running a commodity OS. An earlier attempt aimed at solving
this problem was to emulate the effects of OS jitter on more
widely available and jitter-free systems such as BlueGene/L.
In this paper, we point out the shortcomings of previous such
approaches and present the design and implementation of an
emulation framework that helps overcome those shortcomings
by using innovative techniques. We collect jitter traces on a
commodity OS with a given configuration, under which we want
to study the scaling behavior. These traces are then replayed
on a jitter-free system to predict scalability in presence of OS
jitter. The application of this emulation framework to predict
scalability is illustrated through a comparative scalability study of
an off-the-shelf Linux distribution with a minimal configuration
(runlevel 1) and a highly optimized embedded Linux distribution,
running on the 10 nodes of BlueGene/L. We validate the results
of our emulation both on a single node as well as on a real
cluster. Our results indicate that an optimized OS along with
a technique to synchronize jitter can reduce the performance
degradation due to jitter from 99% (in case of the off-the-shelf
Linux without any synchronization) to a much more tolerable
level of 6% (in case of highly optimized BlueGene/L IO node
Linux with synchronization) at 2048 processors. Furthermore,
perfect synchronization can give linear scaling with less than
1% slowdown, regardless of the type of OS used. However, as the
jitter at different nodes starts getting desynchronized, even with a
minor skew across nodes, the optimized OS starts outperforming
the off-the-shelf OS.

I. INTRODUCTION

Operating system jitter (henceforth referred to as OS jitter)
refers to the interference experienced by an application due to
scheduling of daemon processes and handling of asynchronous
events such as interrupts. Various studies [1], [2] have shown
that parallel applications on large clusters suffer consider-
able degradation in performance (up to 100% degradation
at 4096 processors [2]) due to OS jitter. Several large scale
HPC systems, like the Blue Gene/L [3] and Cray XT4 [4],

*This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HR0011-07-9-0002

232

avoid OS jitter by making use of a customized light-weight
microkernel at the compute nodes. These customized kernels
typically do not support general purpose multitasking and may
not even support interrupts. Moreover, these systems require
applications to be modified or ported for their respective
platforms. Other systems like the ASCI Purple and the Mare
Nostrum at the Barcelona Supercomputing Center [5] make
use of commodity OSes (AIX and RedHat Enterprise Linux
respectively) and thereby suffer from OS jitter [6].

With a growing interest in the use of commodity OSes
for HPC systems [7] [8] [9], there is a much greater need
today than ever before, to develop and to evaluate various
techniques for mitigating OS jitter. However, effectiveness of
any technique to mitigate jitter can only be evaluated in a large
cluster with thousands of nodes. One of the biggest hindrances
in the development and evaluation of new techniques for
handling jitter is that the availability of such large scale pro-
duction HPC clusters running commodity OSes worldwide is
extremely limited for experimentation and validation purposes.
An earlier attempt from Beckman et al. [10] aimed at solving
this problem by emulating the effects of OS jitter on a jitter-
free system such as BlueGene. This approach definitely holds
a lot of promise, as BlueGene is one of the most scalable
systems today and has the largest footprint in terms of number
of nodes. However, Beckman et al. found out that the overhead
of the interval timer on BlueGene/L, which they used for
injecting synthetic jitter, was 16 us and they could not inject
any jitter less than 16 us. Our analysis reveals that nearly 98%
of the jitter encountered on off-the-shelf Linux distributions
with minimal configurations is less than 14 us. The percentage
is even higher on more optimized versions of Linux. In order
for any such emulation approach to produce correct results,
it should take into account the inherent limitations of the
jitter emulation platform (which can be in the same range as
the majority of jitter durations - around 10-15 us) and take
necessary steps to overcome them.

In this paper, we point out the several such shortcom-
ings of previous emulation attempts. We have designed and
implemented an emulation framework that overcomes these
shortcomings by using innovative techniques and can accu-
rately predict the scaling behavior of parallel applications

2008 IEEE International Conference on Cluster Computing

running on large clusters in presence of OS jitter. It builds
on some of the tools that we have developed in our earlier
work [11] [12]. We collect jitter traces from a commodity
OS with a given configuration, under which we want to study
the scaling behavior. These traces are then replayed on a jitter-
free system, while a typical parallel application or benchmark
with repeated compute-barrier phases is executed.

The jitter emulation framework makes use of several in-
novative techniques to avoid possible pitfalls that may lead
to inaccuracies in jitter emulation. This includes techniques
such as scaling up all jitter values (and the corresponding
runtime of the parallel application that executes while jitter
is being introduced) in time domain in order to emulate even
the smallest possible jitter, and then scaling down the final
results. We validate the accuracy of our jitter emulation on
a single node by comparing the jitter distributions from an
Intel machine running an off-the-shelf Linux OS with that
collected from a Blue Gene/L node with emulated jitter. In
order to validate the accuracy of the predicted results from
emulation, we compare them against results from a real cluster.
A close match between the predicted results and the real data
indicates the correctness of our methodology. The application
of this emulation framework to study OS jitter is illustrated
through a comparative scalability study of an off-the-shelf
Linux distribution with a minimal configuration (run level 1)
and a highly optimized embedded Linux distribution, running
on the IO nodes of BlueGene/L.

The main contributions of this paper are the following:

1) A generic methodology for predicting the scaling be-
havior of a cluster running various OS configurations or
employing various jitter handling techniques.

2) Implementation of a jitter emulation framework that
makes use of several innovative techniques to avoid
possible pitfalls that may lead to inaccuracies in jitter
emulation.

3) A comparative scalability study of an off-the-shelf Linux
distribution with a minimal configuration (runlevel 1)
and a highly optimized embedded Linux distribution,
running on the 10 nodes of BlueGene.

4) Experimental results that provide the following insights
into scalability behavior of large clusters running a
commodity OS:

« An optimized OS along with a technique to synchro-
nize jitter can reduce the performance degradation
due to OS jitter from 99% (in the case of the off-
the-shelf Linux without any synchronization) to a
much more tolerable level of 6% (in the case of the
highly optimized BlueGene/L IO node Linux with
synchronization) at 2048 processors.

« Perfect synchronization can give linear scaling with
less than 1% slowdown, regardless of the type of OS
used. However, as the jitter at different nodes starts
getting desynchronized, even with a minor skew
across nodes, the optimized OS starts outperforming
the off-the-shelf OS.

The rest of the paper is organized as follows. Section II
presents an overview of our methodology. We also describe
some of the pitfalls that can lead to inaccuracies in jitter emu-
lation. In section III, we present the implementation details of
various components of our jitter emulation framework. Section
IV describes in detail the innovative techniques employed by
the framework to avoid the pitfalls introduced in section II
and also presents a validation of those techniques. Section V
presents our experimental results. Section VI compares the
scalability prediction results from jitter emulation with data
from a real cluster. In Section VII, we present an overview of
related research. Finally, we conclude and give directions for
our future research in section VIII.

II. METHODOLOGY

In this section we outline some of the requirements for
emulating OS jitter on a jitter free system and give an overview
of our methodology.

A. Requirements

Any methodology for emulating OS jitter by introducing
synthetic jitter should take note of the following pitfalls and
should incorporate ways to overcome them.

o Pitfall 1: Introduction of synthetic jitter on a given plat-
form might have an overhead of its own. This overhead
should be measured and accounted for while introducing
any synthetic jitter. For example, if one uses a timer to
introduce jitter asynchronously, the settimer system call
has an overhead of its own which should be measured
and adjusted for. It is, therefore, possible that on a given
system, any jitter which is less than a particular value,
cannot be introduced as it is smaller than the overhead
itself.

e Pitfall 2: There are system specific limitations on res-
olution of timers and sleep system calls. This implies
that there has to be a minimum time gap between any
two jitter events that can be introduced. It is possible
that jitter events that occur in quick succession of each
other can not be introduced with precision because of
this limitation. Imprecision in sleep calls due to timer
resolution can also introduce a skew across nodes while
emulating perfectly synchronized jitter.

e Pitfall 3: Realistic emulation of jitter on a large number
of nodes using a jitter trace collected from a single node
requires that the single node trace be very large and the
individual nodes replay only a small portion of that trace.
If all nodes replay the entire trace (even if they start
at different points in the trace), all nodes will end up
observing the same set of jitter samples (albeit at different
points of time) - something which is unlikely to happen
in a real setup.

Avoiding pitfall 1 becomes extremely important considering
the fact that the overhead of systems calls such as settimer can
be in the range of 10-15 us and that nearly 98% of the jitter
encountered on off-the-shelf Linux distributions with minimal
configurations is less than 15 us in magnitude.

233

Algorithm 1 The Parallel Benchmark kernel

1: ts = gettimeofday();

2: while elapsed_time < period do
MPI_Barrier

t1 = get_cycle_accurate_time
do_work (iteration_count)

to = get_cycle_accurate_time
MPI_Barrier

ts = get_cycle_accurate_time
compute time (qt) = t2 — ¢1, barrier time (bt) = t3 — t2, total
completion time (qtbt) = t3 — t1
10: t. = gettimeofday();

11: elapsed_time=t. — ts

12: store qt, bt, qtbt

13: MPI_Bcast(elapsed_time)

14: end while

B A A

B. Overview

Our overall methodology for predicting scalability of par-
allel applications running on large clusters in the presence of
OS jitter is based on the following steps:

1) An application or a parallel benchmark [12] is run on
a given number of nodes on a jitter free system and is
expected to finish a given amount of work. The time
taken to finish this work is calculated - Tister_jess-

2) OS jitter trace is collected from a node that is running an
operating system with a particular configuration under
which we want to study the scalability behavior. This can
be done using various tools. We make use of our own
single node benchmark [11], which is based on reading
the CPU timestamp register in a tight loop. We refer to
this as the “TraceCollector”.

3) The jitter trace is then replayed by an emulator (referred
to as the “JitterEmulator”) that introduces jitter by
executing a busy loop for the given period.

4) While jitter is being replayed from the trace, the same
application or parallel benchmark used in step 1 is run
with the same amount of work. The total amount of time
taken for that work to complete is calculated - T)j;szer-
This time (T’;ster) is then compared with the time taken
by the application on that system in the absence of any
jitter (Tister_tess) to calculate a percentage slowdown.

5) The above steps are repeated for an increasing number
of nodes (or processors) to get the scalability behavior of
the cluster in the presence of jitter that is characteristic
of the OS from which the jitter trace was collected in
step 2.

We describe each of the above steps in more detail in the
following section.
III. IMPLEMENTATION DETAILS
In this section we present details about the different com-
ponents of our jitter emulation framework.
A. Parallel Benchmark

The parallel benchmark [12] represents a typical parallel
application with repeated compute-barrier phases. The kernel

of parallel benchmark is shown in Algorithm 1. Each processor
in the cluster runs a MPI task that executes the parallel
benchmark kernel.

The function call do_work() represents a fixed amount of
work that is expected to finish in a given time (referred to
as quanta). Number of iterations or amount of work required
to consume gquanta time is pre-calculated using a calibration
step prior to executing the kernel. The work done can be any
operation. For the experiments in this paper, we have chosen
it to be a Linear Congruential Generator (LCG) operation
defined by the recurrence relation:

zjt1 = (a*z; +b) mod p €}

At the end of the compute phase, there is a barrier call for
synchronization. If an OS activity interrupts a MPI task either
during the compute phase or the barrier phase, it slows down
other MPI tasks in the cluster that have already completed
their work and have entered the barrier call.

We measure the time spent in the compute phase, referred
to as gt, time spent in the barrier call, referred to as bt, and
the total time for completing a phase, referred to as gtbt. The
broadcast call (in line 13) ensures that the task with rank
0 sends the current elapsed time to all other tasks. This, in
turn, ensures that all tasks terminate after executing the same
number of iterations of the do_work loop. More details about
the parallel benchmark can be found in [12].

B. TraceCollector

TraceCollector is a variation of the single node benchmark
used by us in our earlier work [11] and by other researchers
[10]. The TraceCollector is run on a single node that is running
the operating system with the specific configuration under
which we want to predict the cluster scalability.

The TraceCollector kernel is shown in Algorithm 2. It is
based on reading the timestamp register on the CPU in a tight
loop (lines 7 and 17). First, the minimum time taken to read
the timestamp register (i) is recorded (lines 4-11). After
this, the timestamp register is read in a loop and difference
between successive timestamp readings are compared against
the specified threshold (line 18). We currently set this threshold
to be 10 times the minimum difference observed (t,,,s»,). These
timestamp deltas represent the number of cycles required to
read the timestamp register. Most of these deltas (around 99%
of them) would be very small and these correspond to the
actual number of cycles required for the rdtsc instruction (¢,
- it is roughly equal to 88 cycles on Intel Xeon - 0.03us on
a 2.8 GHz machine and equal to 75 cycles on a BlueGene/L
IO Node at 700 MHz - 0.11us). However, when a daemon
process is scheduled or an interrupt is handled or any other
system activity occurs that takes the CPU away from the
application, the deltas are much higher. If the difference is
greater than the specified threshold, the timestamps themselves
are recorded (lines 20-21). The timestamps are later stored to
create a jitter trace and the timestamp deltas are added to a
histogram (referred to as the user-level histogram) (lines 27-
29).

234

Algorithm 2 TraceCollector

1: i=0; indexA2=0; threshold=10;
2: N=(1*1024%1024); tmin=LONG_LONG_MAX;
3: /* first find tmin */
4: current_reading = rdtsc();
5: while (i < N) {
6: prev_reading = current_reading;
7: current_reading = rdtsc();
8: if(current_reading - prev_reading < tmin)
9: tmin = current_reading - prev_reading;
10: i++;
1 }
12: i=0;
13: /* now compare all timestamps against tmin * threshold */
14: current_reading = rdtsc();
15: while (i < N) {
16: prev_reading = current_reading;
17: current_reading = rdtsc();
18: if(current_reading - prev_reading > tmin * threshold) {
19: /* collect jitter timestamps */
20: A2[indexA2++] = prev_reading;
21: A2[indexA2++] = current_reading;
22: i++;
23 }

25: for (i=0; i < indexA2 -2 ;i ++) {

26: /* store jitter trace - timestamp, runtime, sleeptime */

27 store(A2[i], A2[i+1]-A2[i], A2[i+2]-A2[i+1]);

28: /*add jitter duration - timestamp deltas to user-level-histogram™*/
29: add_to_distribution(A2[i+1]-A2[i]);

30: }

The jitter trace is generated by storing the timestamp (i.e. the
start time of the jitter activity), the duration of the jitter activity,
and the time difference between successive jitter events (line
24). We will refer to these as the start-time, run-time, and
sleep-time respectively.

Ideally, the tight loop that reads the timestamp register
should be as small as possible (with only the rdtsc instruction)
and all processing of the collected timestamps should be done
outside the loop so that there are no overheads incurred while
measuring jitter. However, this would require huge amounts
of physical memory in order to collect a resonably long
trace. One solution is to collect jitter samples in several
rounds and process the collected data after each round. This
has the drawback that certain periodic jitter events might be
missed and that the collected trace will be discontinuous.
The overhead introduced by the additional assignment and
comparison statements in the loop presented in Algorithm 2
is quite small (much smaller than the 0.3 us threshold used
for measuring jitter).

1) Jitter Trace Collection: For experiments in this paper,
we run the TraceCollector to collect jitter traces from two dif-
ferent Linux configurations (an off-the-shelf Linux distribution
and a highly optimized embedded version of Linux) running
on two different platforms (Intel and PowerPC).

Fedora Core 5 in runlevel 1 with networking support
running on Intel: This configuration has a very basic minimal
set of daemon processes and drivers and can be thought of as

Distribution for multiple processes

T 1 T T T T

| .
oA
t
[iA
or "% l ; Linux_on_Intel.distn ---=--- B
i Fxi :
1 IRV BGL_IONode_Jitter.distn
1 | V\ |
I TR R
g I Lo
o2t 1 } |
e i 1
4 i I
s : ’.
st N .
o) g
B £ i i
L i]
% ¥ iE i
[i
S5+ * T
1 4+ X)
1 10 100 1000 10000
X:time in us
Fig. 1. Distribution of jitter from off-the-shelf Linux running on Intel in

runlevel 1 and optimized Linux running on BlueGene/L 10 Nodes

an off-the-shelf configuration optimized for HPC applications.
The machine had a single Intel Xeon (TM) 2.8 GHz CPU
with a cache size of 512 KB Cache and 1GB RAM. The
timer interrupt interval was configured to be the default of
4 milliseconds (i.e. 250Hz).

Highly optimized embedded version of Linux running on
BlueGene/L 10 Nodes: The BlueGene/L. 10 nodes (PowerPC
440, 700 MHz) run a highly optimized version of Linux
(kernel version 2.6.5-348). This Linux distribution is referred
to as embedded [13] as it does not use any swap space, has
an in-memory root file system, uses little memory, and lacks
the majority of daemons and services found in off-the-shelf
distributions.

The above traces were collected by running the TraceCollec-
tor to collect 1 million jitter samples (that takes approximately
an hour in our experiments) using the methodology described
above. Probability distributions of jitter durations in both the
jitter traces have been plotted using the Parzen window density
estimation technique [14] in Figure 1. The y-axis is a
logarithm of the probability that a particular jitter occurs and
the x-axis is the jitter duration in pus. An analysis of off-the-
shelf Linux runlevel 1 jitter trace reveals that nearly 98% of
jitter values are less than 14 ps. For the highly optimized
BlueGene/L 10O node Linux, nearly 99.5% of the jitter values
are less than 5 ps. It does not have a large number of points
in the 10-50 ps range like the runlevel 1 trace.

C. JitterEmulator

In this section, we first give reasons for using Blue Gene/L
as the emulation platform followed by some details of the
JitterEmulator component.

1) Blue Gene/L as the jitter emulation platform: We use
Blue Gene/L as the jitter emulation platform. Blue Gene/L
uses a specialized light-weight microkernel on the compute
nodes that does not allow multitasking and therefore does
not have any daemon processes or a process scheduler. This
creates an operating environment that is free of any system
induced jitter. This has been illustrated in earlier studies [6].
We verified it again by running the TraceCollector on a Blue

235

Distribution for multiple processes

| BlueGene_without_JitterEmulation

10g10 [F(X)]
IS

.
0.1 0.2 0.3 0.4 0.5 0.6 0.7
X: time in us

Fig. 2. Distribution of jitter on Blue Gene/L : output from the TraceCollector

Gene/L node. The output of the TraceCollector is shown in
Figure 2.

We chose Blue Gene/L as the jitter emulation platform as it
provides us with the scale at which we want study the impact
of jitter. Even though, the experiments for this paper were
conducted on a single rack of Blue Gene/L (i.e. 1024 nodes
or 2048 processors), one can use existing installations of Blue
Gene/L that have 65,536 dual-processor compute nodes [15].

2) JitterEmulator Details: JitterEmulator is a component
that resides on each processor where a MPI task runs. Jitter
emulator reads the jitter trace file generated by the TraceCol-
lector into an in-memory data structure where each record
consists of of a start-time (timestamp for the jitter activity), a
run-time (duration of the jitter activity), and sleep-time (time
gap between the current and the next jitter activity). It then
introduces the jitter corresponding to a particular record by
executing a busy loop for the given run-time, followed by
executing a sleep for the given sleep-time.

The JitterEmulator can either run within the context of the
application process or within its own process context. Running
the JitterEmulator within the application process context has
the disadvantage that the application has to be recompiled with
a call to the JitterEmulator. In this case, the JitterEmulator
introduces jitter through an interval timer mechanism by
periodically stopping the application and executing a busy
loop for the specified period. Running the JitterEmulator
within its own separate context, on the other hand, has the
advantage of not requiring a recompilation of the application.
However, the target platform must support multiple processes
or multitasking for this option and one must ensure that the
JitterEmulator process has a much higher priority than the
application process (so that it always gets a chance to run).
Since Blue Gene/L does not support multiple processes on
the compute nodes, we make use of the first option and
run the JitterEmulator within the application process context.
The Parallel Benchmark is recompiled with a call to the
JitterEmulator.

Choosing the point in the jitter trace from where the
JitterEmulators at all nodes start introducing jitter is an im-
portant decision and it can have interesting ramifications. In a
cluster that has unsynchronized jitter, different kinds of jitter
events will hit each node at different points in time. On the

other hand, in a cluster that has employed a mechanism for
synchronizing jitter across all nodes, jitter events will hit each
node at the same time. In order to emulate the unsynchronized
jitter scenario, the JitterEmulators at all nodes start introducing
jitter from different randomly chosen points in the jitter trace.
To emulate synchronized jitter, the JitterEmulators at all nodes
start introducing jitter from the same randomly chosen point
in the jitter trace.

The JitterEmulator makes use of the interval timer mech-
anism (using the setitimer system call) to transfer control to
itself. It sets up a signal handler for the SIGALRM signal. The
setitimer system call sets up a timer, which on expiry delivers
the SIGALRM signal to the parallel benchmark application
process. The signal handler (timer handler) routine executes a
busy loop for the jitter duration (i.e. the run-time) and then
sets the next timer after an interval equal to the sleep-time in
the current jitter trace record. It then increments the index in
the jitter trace so that it picks up the next jitter record in the
trace when the timer expires again.

IV. SAFEGUARDING AGAINST THE PITFALLS

The JitterEmulator makes use of several innovative tech-
niques to safeguard against the pitfalls discussed earlier in
section II.

A. Safeguard against Pitfall 1

We measured the overhead of introducing jitter on Blue
Gene/L to be in the range 14-16 ps. Out of this, the overhead
of the sefitimer system call is about 10 ps (measured by having
an empty timer handler routine). The remaining 4-6 us are
spent in the various steps in the timer handler routine. In
order to offset this overhead, we reduce the run-time of all
jitter values by 14 us. This implies that any jitter value less
than 14 ps can not be introduced during emulation. This is
unacceptable as most timer interrupt activity is less than 14
us. As mentioned earlier, nearly 98% of jitter values in the off-
the-shelf Linux runlevel 1 jitter trace are less than 14 us. For
the highly optimized BlueGene/L 10 node Linux, this number
is even higher and almost 99.5% of the jitter values are less
than 14 us. The earlier work from Beckman et al. [10] on
jitter emulation suffers from this pitfall and they are unable to
introduce any jitter which is less than 14 us and as we know,
most of the jitter encountered on an off-the-shelf commodity
OS with a minimal configuration or an optimized OS is in this
range.

To overcome this, we scale all the jitter values (run-time
and sleep-time) as well as the quanta time and the period
of the Parallel Benchmark by a constant factor. At the end
of the experiment, all values (competition times (gtbt), and
barrier times (bt)) are scaled down by the same factor. Ideally,
we should use a scaling factor of 14 to ensure that all jitter
values in the trace can be emulated. However, this would
result in running the Parallel Benchmark for a period 14
times longer than the intended period. Analysis of off-the-
shelf Linux runlevel 1 jitter trace revealed that 77% of the
jitter values are greater than or equal to 5 us. Hence, with a

236

Distribution for multiple processes

Linux_on_Intel.distn ---=-- B

BlueJene_with_LlIntel_Jitter.distn

_1}: ‘]
R N VEEY

T N o %ﬁ b
o Pho
T LA
; i \J

S5k i‘:) ‘ :1 *jji‘ ?r B

! 10 100 1000 10000

X: time in us

Fig. 3. Verification of jitter emulation on a single node without applying any
scaling factor

scaling factor of 3 we were able to introduce all jitter values
that are greater than or equal to 5 us and emulate 77% of
the jitter samples in the trace. However, in the BlueGene/L 10
node trace, even with a scale factor of 8, we could emulate
only 31% of the trace. This implies that nearly 70% of the
jitter values in this trace are less than 1.75 pus. However, with
a scale factor of 9, we were able to emulate nearly 92% of the
trace, which indicates that there are a large number of jitter
values between 1.55 us and 1.75 us.

B. Safeguard against Pitfall 2

Our measurements indicated that the smallest value below
which the setitimer system call stops working on Blue Gene/L
is nearly 5 us. This implies that it is not possible to set a timer
that wakes up in less than 5 us. Hence, if there is a sleep-
time that is less than 5 ps we replaced it with 0, effectively
resulting in merging of two jitter values into one. Furthermore,
the resolution of the timer on BlueGene/L is approximately
130 ps on an average and has a standard deviation of about
20 ps. This has two interesting ramifications.

First, any sleep-time value in the jitter trace that is less
than 130 us is likely to result in sleep times longer than the
specified value. However, this should have only a minimal
effect on our emulation results as only 3% of the sleep times
are less than 130 us in the off-the-shelf Linux runlevel 1 jitter
trace.

Second, the gap between any two jitter instances is likely to
have some inaccuracy because of the resolution of the sleep
time being 130 ws. This is compensated by adjusting all the
sleep times for the timer resolution. However, the fact that the
sleep times have standard deviation of about 20 s, implies
that even if all the nodes start jitter emulation at the same index
in the trace (to emulate synchronized jitter), they will get out
of sync with time because of the variance in sleep time. This
causes problems in emulating perfectly synchronized jitter.
The earlier work from Beckman et al. [10] does not take into
account the variance in sleep calls and hence their emulation of
synchronized jitter does not represent perfect synchronization.
We overcome this limitation by resetting the trace index to the

Distribution for multiple processes
1 ﬁ . :
1
\Q zi Linux_on_Intel.distn ---=-- B

BlueGene_with_LlIntel_Jitter.distn

log10 [F(X)]
& N
- *?N"\}
'“&":;.m.w?
faepon g s o g e R A
S

S S
NI

]

T

10000

. L L L
1 10 100
X:time inus

1000

Fig. 4. Verification of jitter emulation after applying a scaling factor of 3

same randomly chosen value across all nodes in each compute
phase instead of doing it just once at startup. This helps us
emulate perfectly synchronized jitter.

C. Safeguard against Pitfall 3

In order to ensure that all nodes do not end up observing all
set of jitter values (i.e. the entire trace) in a given experiment
and that each node replays only a reasonably small portion
of the entire trace, the JitterEmulator framework stops the
experiment as soon as any one node finishes a fixed percentage
of the total trace. For all experiments in this paper, we
introduce only one third of the trace in each run.

D. Validating the Safeguards on a Single Node

We validate the accuracy of our jitter emulation and the
effectiveness of the innovative techniques mentioned above
on a single node by running the TraceCollector on single
processor on BlueGene/L while jitter was being replayed by
the JitterEmulator. This step required a recompilation of the
TraceCollector with a call to the JitterEmulator. We compared
the output of the TraceCollector (frequency distribution of
jitter durations) from an Intel machine running Linux (Fedora
Core 5, 2.6.20.7 kernel, runlevel 1) with that of a Blue Gene/L
node with emulated jitter using a trace collected from the same
Intel machine running Linux and a scale factor of 3. In order to
validate that the jitter emulation framework has successfully
emulated jitter on Blue Gene/L that is representative of the
jitter encountered on an Intel machine running Linux (Fedora
Core 5, 2.6.20.7 kernel, runlevel 1), the two distributions
should match.

Figures 3 and 4 plot the jitter duration for the two cases
mentioned above as probability distributions using Parzen
window density estimation technique [14]. Figure 3 shows
the distribution without applying any scaling factor (safeguard
against pitfall 2 above). The emulated jitter curve starts only
after 14 us. Although nature of the two distributions is similar
in the region greater than 14 us, the emulated jitter curve is
shifted to the right in the middle of the graph (region between
14 and 125 ps). This is because all jitter values include an

237

additional 14 us due to the overhead (because of the pitfall 2
mentioned above - overhead of jitter introduction itself being
14 ps). This effect is not visible in the peaks around and
beyond 500 ps as the overhead of 14 us becomes a small
percentage of the actual jitter value.

Figure 4 shows the distribution after scaling all jitter values
(runtimes and sleeptimes) by a factor of 3. The usefulness of
this technique can be observed immediately. In this case, we
were able to introduce jitter values greater than 5 us and the
two distributions exhibit close matching after the 5 us point
on the x-axis.

We also use a quantitative measure called KL divergence
[16] to measure the difference between two probability distri-
butions. Smaller the KL divergence score for two distributions,
the more closely they match. For two identical distributions,
the KL divergence score is 0. The KL divergence score for the
two distributions in the no-scaling graph (Figure 3) is 18117,
whereas the KL divergence score for the two distributions after
applying a scale factor of 3 (Figure 4) is 873 (improvement
by a factor of close to 20).

V. EXPERIMENTAL RESULTS

We conducted three sets of experiments to study the effect
of OS jitter on the performance of fine grained parallel
applications as number of processors in the cluster were
increased from 16 to 2048 with 1 MPI task per processor.
One full rack of Blue Gene/L (i.e.1024 nodes) was used in the
“Virtual Node” mode, which meant that both the processors
on a node were used for executing MPI tasks. We also
conducted experiments in the “CoProcessor” mode, where
only one processor was used for computation, while the second
processor was used for communication tasks. Since, our results
for “CoProcessor” mode closely match the results for “Virtual
Node” mode, we do not present them in this paper.

The three sets of experiments emulated jitter in various ways
to study application performance under:

1) jitter present in off-the-shelf Linux distribution in run-
level 1 and in a highly optimized embedded Linux
distribution;

2) jitter that has been synchronized once at start up across
all nodes;

3) jitter that is synchronized across all nodes in each
compute phase;

For all the experiments, the number of processors were
increased from 16 to 2048. Each processor had an instance of
the Parallel Benchmark (the MPI task) executing the compute-
barrier loops and an instance of the JitterEmulator (running in
the same process context as the MPI task) introducing jitter
from the collected jitter traces. For a given processor count,
first a maximum completion time for each phase (referred to
as gtbt in section III - sum of compute and barrier times)
was calculated across all processors. Maximum completion
time (MaxQTBT(itter)) in each phase was averaged over a
number of iterations to come up with the average maximum
completion time (AvgMaxQTBT(itter)). This was compared
with the average maximum completion time for the Parallel

—*-RL1 Jitter —+BGLIO Jitter
Percentage Slowdown

—+—RL1 Sync Once Jitter —=—BGLIO Sync Once Jitter

100

3

Percentage Slowdown

16 64 128 256 512 768 1024 1536 2048

Number of Processors

Fig. 5. Percentage slowdown for a compute phase under various Linux
distributions and jitter synchronization settings

Benchmark (with the same work quanta of 1 ms) executing
on Blue Gene/L without any jitter. Percentage slowdown (SD)
for a n processor case, is then calculated as:

AvgMaz QT BTy (jitter) — AvgMazQT BTy (no jitter)
*
AvgMaxzQT BTy (no jitter)

SDy =

100 2)

For all the experiments, we first collect the 2 traces men-
tioned in section III-B - from the off-the-shelf Linux (Fedora
core 5) running on Intel in runlevel 1, and from the highly
optimized embedded Linux on BlueGene/L 10 nodes. These
traces are collected by running the TraceCollector for an hour
using the methodology described in sections II and IIL.

A. Experiment 1: Impact of jitter present under various Linux
distributions

The traces collected, are then used by the JitterEmulator
to introduce jitter while the Parallel Benchmark executes.
JitterEmulators on different nodes (i.e. processors) start at
different randomly chosen points in the jitter trace. The work
quanta for the Parallel Benchmark was set to 1 millisecond.
The percentage slowdown for the above cases is shown in
Figure 5. RL1 refers to the off-the-shelf Linux in runlevel 1
and BGL IO Node refers to the optimized embedded Linux
used on BlueGene/L IO nodes.

It can be observed that as number of processors are in-
creased from 16 to 2048, the percentage slowdown reaches
close to 99% with runlevel 1 jitter. The highly optimized
embedded Linux used on BlueGene/L 10 nodes, fares much
better, and in the worst case, the percentage slowdown reaches
close to 20% at 2048 processors. The percentage slowdown
numbers reported by our jitter emulator framework are in
the same range as those reported by Petrini et al. [2] on a
real system (ASCI Q) running a commodity OS (AIX) where
they detected nearly 100% performance degradation at 4096
processors .

B. Experiment 2: Impact of synchronizing jitter once at startup
across all nodes

This experiment is carried out in a similar way to the
above experiment except one difference. Instead of starting
from different randomly chosen points in the jitter trace, the

238

~+-RL1 Sync Once ~=-BGLIO Sync Once

Percentage Slowdown

—+—RL1 Sync Every Phase —< BGLIO Sync Every Phase

100

R

>

- —

Percentage Slowdown
.
|
|
"
[

16 64 128 256 512 768 1024 1536 2048

Number of Processors

Fig. 6. Comparing the percentage slowdown for one time jitter synchroniza-
tion with a per phase jitter synchronization

Jitter Emulators on different nodes start at the same randomly
chosen point to emulate synchronization of jitter across all
nodes. This results in a one time synchronization of jitter
across all nodes at the start of work. Experiment is carried
out for both off-the-shelf Linux runlevel 1 trace and the
BlueGene/L IO node Linux trace. Work quanta for the Parallel
Benchmark is kept the same as the above experiment (1
millisecond).

Percentage slowdown for the synchronized traces is shown
along with the normal traces in Figure 5.

It can be observed, that synchronizing jitter across all
nodes brings great benefits. At 2048 processors, percentage
slowdown is decreased from 99% to 13% for runlevel 1 jitter
and from 20% to 6% for the BlueGene/L IO node Linux jitter.
Our results are in the same range as those reported by Terry
et al. [17] where they detected a performance improvement
of nearly 50% through synchronized scheduling of processes.

C. Experiment3: Impact of synchronizing jitter in each com-
pute phase

In the previous experiment, even though the JitterEmulators
start at the same index, they get desynchronized fairly soon
because of the variance in sleep times (timer resolution on
BlueGene/L is 130 us on an average with a standard deviation
of 20 ps - pitfall 2 mentioned in section IV). We observed
that the maximum desynchronization between the jitter emu-
lators at different nodes at the end of all work was roughly
3820 ps for BlueGene/L IO node Linux trace and 5300 us
for Linux runlevel 1 trace. In order to overcome this and
emulate perfectly synchronized jitter, we repeated the above
experiment by replacing a one time start up synchronization
with synchronization in each compute phase. We do this by
resetting the trace index to the same random index across all
nodes in each compute phase. Percentage slowdown numbers
for perfect synchronization experiment are compared with one
time synchronization numbers in Figure 6.

The curves for synchronization in each compute phase show
linear scaling for both BlueGene/L I0 Node Linux trace
as well as Linux runlevel 1 trace. The following important
observations can be made:

1) Even a minor drift of around 3 ms in case of BGLIO
trace (or 5 ms in case of RL1 trace) can cause a degra-
dation of 6% for BGLIO trace (and around 13% in case
of runlevel 1 trace). These curves represent worst case
slowdown numbers with jitter synchronization. The flat
curves, on the other hand, represent best case slowdown
and show linear scaling (perfect synchronization).

2) Even though the per phase synchronization curves are
flat, percentage slowdown numbers for the runlevel 1
trace (0.7%) are lower than the optimized BGLIO Node
kernel (0.9%). An analysis of the two traces indicate
that the runlevel 1 trace consists of infrequent but long
duration jitter whereas BGLIO Node trace consists of
frequent but very short duration jitter . In the runlevel 1
trace, only 0.6 jitter samples on an average hit each Par-
allel Benchmark iteration whereas in the BGLIO trace,
nearly 1.04 jitter samples on an average hit each itera-
tion. This indicates, that for perfect synchronization, it
doesn’t really matter what kernel is being used and even
an off-the-shelf kernel may outperform an optimized
kernel. However, the situation changes drastically once
the nodes start getting out of sync, and the optimized
kernel has much lower slowdown as compared to the off-
the-shelf kernel, which has infrequent but long duration
jitter.

These two settings represent the two extremes of jitter

synchronization and in practice, jitter is synchronized neither
every phase nor just once, but every few compute phases.

VI. VALIDATING THE OVERALL APPROACH

To validate the accuracy of slowdown prediction results
using jitter emulation, we ran the Parallel Benchmark on a
real cluster and the results were compared with percentage
slowdown numbers reported by JitterEmulator. The real cluster
that we got access to had 13 nodes. Each node had 32 Power
6 4GHz processors, giving us a total of 416 processors. They
all ran SUSE Linux Enterprise Server 10 SP2 with 2.6.24
kernel. First, we collected the jitter traces from a single node
by running the Trace Collector. In order to emulate 32 cores
of a single SMP node, 32 instances of Trace Collector were
run simultaneously (with each instance bound to a unique
processor) and 32 different traces were collected. This is
because different cores of a single SMP node, have a much
higher degree of correlation in their jitter profiles and they
need to be modeled as a group. During emulation, processors
are divided into sets of 32 and JitterEmulators in each such
set use one of these 32 jitter traces. Analysis of jitter traces
revealed that a scale factor of 6 enabled us to cover 65%
of the trace. We first conducted a single node validation by
emulating a jitter trace from one of the 32 cores using a scale
factor of 6. Figure 7 plots the jitter distribution collected from
a BlueGene/L node with emulated jitter (using a scale factor
of 6) and that from a real trace as probability distributions
using Parzen window density estimation technique. The KL
divergence measure for the two distributions in Figure 7 is
2510.

239

Distribution for multiple processes

T T T T

RL3_LINUX_Core0.distn ----=---

]
P; Emulation_RL3_Linux_Core0.distn
L

\g\

log10 [F(X)]

&

L L L L f: L L

1 10 100 1000 10000 100000
X: time in us

Fig. 7. Single node validation of jitter emulation using a scale factor of 6
for a real cluster node with Linux in runlevel 3

We then conducted a run of the Parallel Benchmark on
the real cluster, while increasing the number of processors
gradually from 32 to 416. Parallel Benchmark was used with
a work quanta of 1 ms. These nodes were not connected by
a high speed interconnect and hence we chose to consider the
effect of jitter only during the compute phase (and how faster
tasks wait for slower tasks at the barrier). The effect of jitter
encountered during barrier (i.e. during message passing over
the network) was not considered as it depends on the nature of
the interconnect. Emulation results for total completion time
(i.e. sum of compute and barrier time - referred to as gtbt
in section III) on BlueGene/L will match real cluster results
only if the cluster has a high speed interconnect. The real
cluster run was followed by a full multi node emulation run
on BlueGene/L while number of processors were increased
from 32 to 416. The settings for Paralle]l Benchmark was kept
identical as the real run.

For both the runs, Maximum compute time (i.e. maximum g
using the terminology used in section III) across all processors
was computed in each phase to capture the effect of jitter.
Maximum compute time (MaxQT) in each phase was averaged
over a number of iterations and then a percentage slowdown
for compute time for a n processor case was calculated as
follows:

_ AvgMaxQT, (jitter) — AvgMaxQTn(no jitter)

§Dn AvgMaxQTn(no jitter)

* 100
3)
The above equation is identical to the slowdown equation

mentioned earlier in section V, except that, here we make use

of only gt (compute time), and not of gtbt (compute+barrier
time). For the real cluster run, the compute quanta (1 ms) is
taken as the reference no jitter AvgMaxQT (AvgMaxQT(no
jitter)). A comparison of the percentage slowdown numbers
for emulation and real runs is given in Figure 8. The numbers
match fairly closely and this validates our approach. As the
number of processors are increased, the slowdown due to jitter
during the compute phase starts worsening as the probability
that one of the tasks gets hit by a high duration jitter starts
increasing.

This is only an initial validation of our approach as we

—=—Real Runs
—+—Emulation

Percentage Slowdown

Percentage Slowdown
@
3

32 64 128 256 320 416
Processors

Fig. 8. Validation of slowdown prediction by comparing emulation results
with data from a real cluster

validate only the slowdown during the compute phase. We
are currently in the process of validating our approach on
a real cluster with a high speed interconnect, where we can
validate the slowdown both during the compute and the barrier
phase. Another interesting point to note is that the slowdown
experienced by the parallel benchmark in the compute phase
due to jitter may be modeled without doing actual barriers
. We are planning to extend our current jitter emulation
framework to do emulation without barriers (e.g., by removing
the barrier calls in lines 3 and 7 in Algorithm 1 and recording
just gf), which can help us do emulation on a much larger
processor count than the actual physically available BlueGene
processors. This can be used to study the slowdown in the
compute phase due to OS jitter at a much larger task count.

VII. RELATED WORK

Several studies conducted on real large scale HPC systems
have demonstrated the debilitating effects of OS jitter on
scaling of collectives. One of the earliest works that reported
the phenomenon of OS interference on parallel program per-
formance was conducted by Petrini et al. [2]. They observed
nearly 100% performance degradation at 4096 processors on
ASCI Q. A more recent work compares the performance of
three leading supercomputers: Blue Gene/L, Red Storm, and
the ASCI Purple by conducting various experiments on these
systems [6]. While these studies provide useful insights into
the impact of OS jitter on parallel program performance, they
require access to these real systems.

There also has been prior work to study the impact of
jitter and predict its impact on scalability using an analytical
framework [18] as well as simulation [12]. Since jitter char-
acteristics on different operating systems and under various
configurations can vary a great deal as shown in [11], it is
non-trivial to generate accurate models. Although analytical
studies, and simulation experiments provide the first step
towards understanding the problem, emulation takes it closer
to reality by replaying traces collected on real systems.

The work that can be considered closest to ours is by
Beckman et al. [10]. While their approach is similar to ours,
we improve upon that work on at least four counts. First, their

240

work suffers from the 14 us overhead limitation (the overhead
of settimer system call) on BlueGene/L - pitfall 1 mentioned
in this paper, which does not allow them to introduce any
jitter that is less than 14 ps. This is a severe restriction as our
analysis reveals that close to 98% of the jitter encountered
on modern off-the-shelf Linux distributions is less than 14
ws. Thus, their emulation results are not representative of real
world Linux distributions. To overcome this limitation, we
make use of a scaling technique that allows us to introduce
even the smallest possible jitter. Second, they make use of
purely synthetic jitter, while we improve upon the single node
benchmark reported in [10] to collect traces from real Linux
systems. We use these traces to do a trace driven emulation
of jitter on Blue Gene/L rather than injecting purely synthetic
jitter with hypothetical periodicity and duration. It appears that
there is some work in progress in the ZeptoOS project [9] that
attempts to record real jitter traces and replay them to explore
system performance. Third, they do not take into account
the variance in sleep calls and hence their emulation of
synchronized jitter does not represent perfect synchronization.
We overcome this limitation by resetting the trace index to the
same randomly chosen value across all nodes in each compute
phase instead of doing it just once at startup. This helps
us emulate perfectly synchronized jitter. Finally, we validate
our approach by comparing the results from jitter emulation
against slowdown numbers from a real cluster.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the design and implementation of
an emulation framework that can be used to predict scalability
of large clusters in the presence of OS jitter. We pointed out
the shortcomings of previous such emulation approaches that
may lead to inaccuracies in jitter emulation and presented
innovative techniques that should be used to overcome these
shortcomings. One of these techniques included scaling up
all jitter values (and the runtimes of the parallel application)
and scaling down the final results so as to allow the jitter
emulator to accurately emulate even the smallest possible
jitter. The framework relies on trace-driven emulation of OS
jitter on a jitter-free platform such as Blue Gene/L. It uses
benchmarks from our earlier work. We validated our jitter
emulation technique on a single node by comparing the jitter
profiles from an Intel machine running Linux with that of a
Blue Gene/L node with jitter emulator. We also validated the
scalability prediction results using jitter emulation with data
from a real cluster. The results match closely and this validates
our approach.

We demonstrated the application of this emulation frame-
work to study OS jitter through a comparative scalability
study of an off-the-shelf Linux distribution with a minimal
configuration (runlevel 1) and a highly optimized embedded
Linux distribution, running on the 10 nodes of BlueGene/L.
Our results indicate that an optimized OS along with a
technique to synchronize jitter can reduce the performance
degradation due to jitter from 99% (in case of off-the-shelf
Linux without any synchronization) to a much more tolerable

level of 6% (in case of highly optimized BlueGene/L IO node
Linux with synchronization) at 2048 processors. Furthermore,
perfect synchronization can give linear scaling with less than
1% slowdown, regardless of the type of OS used. However,
as the nodes start getting desynchronized with respect to each
other, even with a minor skew across nodes, the optimized OS
starts outperforming the off-the-shelf OS.

In our future work, we intend to use the jitter emulator
framework to study scalability behavior of clusters running
real time kernels as well those using virtualized platforms. We
are also working on some coscheduling techniques to mitigate
OS jitter and we will make use of the emulation framework to
evaluate its efficacy. We are also planning to use real parallel
applications and other publicly available parallel benchmarks
and run them with our emulation framework to predict their
scalability in presence of OS jitter. Scaling up the compute
phase of some of these real applications might be non trivial.

REFERENCES

[1] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “ACM SIGOPS
Operating Systems Review,” in Operating System Issues for Petascale
Systems, 2006.

[2] F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8192 Processors of ASCI Q,” in ACM Supercomputing, 2003.

[3] T. B. G. Team, “An Overview of the Blue Gene/L Supercomputer,” in
ACM Supercomputing, 2002.

[4] “Cray XT4 - http://www.cray.com/products/xt4/.” [Online]. Available:
http://www.cray.com/products/xt4/

[5] “Top 10 Supercomputers
- http://www.top500.o0rg/lists/2007/06.”
http://www.top500.0rg/lists/2007/06

[6] A. Hoisie, G. Johnson, D. Kerbyson, M. Lang, and S. Pakin, “A
Performance Comparison through Benchmarking and Modeling of Three
Leading Supercomputers: Blue Gene/L, Red Storm, and Purple,” in ACM
Supercomputing, 2006.

2007
Available:

circa Jun
[Online].

[7]1 “Right-weight Linux Kernel Project at Los
Alamos National Laboratory.” [Online]. Available:
http://public.lanl.gov/cluster/projects/index.html

[81 L. S. Kaplan, “Lightweight Linux for High-Performance

Computing,” in LinuxWorld.com, December 2006. [Online]. Available:

http://www.linuxworld.com/news/2006/120406-lightweight-linux.html
[9]1 “Zeptoos: The small linux for big computers.” [Online]. Available:
http://www-unix.mcs.anl.gov/zeptoos/
P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The Influence of
Operating Systems on the Performance of Collective Operations at Ex-
treme Scale,” in IEEE International Conference on Cluster Computing,
2006.
P. De, R. Kothari, and V. Mann, “Identifying Sources of Operating
System Jitter Through Fine-Grained Kernel Instrumentation,” in /EEE
Cluster, 2007.
P. De and R. Garg, “The Impact of Noise on the Scaling of Collectives:
An Empirical Evaluation,” in High Performance Computing (HiPC),
2006.
J. Moreira, M. Brutman, J. Castanos, and T. Engelsiepen, “Designing
a Highly-Scalable Operating System: The Blue Gene/L Story,” in ACM
Supercomputing, 2006.
E. Parzen, “On the estimation of a probability density function and the
mode,” in Annals of Math. Stats., Vol. 33, pp. 1065-1076, 1962.
“Blue Gene at Lawrence Livermore National Laboratory.” [Online].
Available: https://asc.llnl.gov/computing_resources/bluegenel/
“Kullback-Leibler Divergence.” [Online].
http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
P. Terry, A. Shan, and P. Huttunen, “Improving application performance
on HPC systems with process synchronization,” Linux Journal, no. 127,
pp. 68-73, Nov 2004.
S. Agarwal, R. Garg, and N. K. Vishnoi, “The Impact of Noise on the
Scaling of Collectives,” in High Performance Computing (HiPC), 2005.

[10]

(1]

[12]

[13]

[14]
[15]
[16] Available:

(171

(18]

241

