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Abstract— Understanding the behavior and impact of various
sources of Operating System Jitter (OS Jitter) is important not
only for tuning a system for HPC applications, but also for
the ongoing efforts to create light-weight versions of commercial
operating systems such as Linux, that can be used on compute
nodes of large scale HPC systems. In this paper, we present a
tool that helps in identifying sources of OS Jitter in a commodity
operating system such as Linux and measures the impact of
OS Jitter through fine grained kernel instrumentation. Our
methodology comprises of running a user-level micro-benchmark
and measuring the latencies experienced by the benchmark.
We then associate each latency to operating system daemons
and interrupts using data obtained from kernel instrumentation.
We present experimental results that help identify the biggest
contributors to the total OS Jitter perceived by an application
on a commodity operating system such as Linux. Our results
revealed that while 63% of the total jitter comes from timer
interrupts, the rest comes from various system daemons and
interrupts, most of which can be easily eliminated. The tool
presented in this paper can also be used to tune “out of the box”
commodity operating systems as well as to detect new sources
of operating system jitter that get introduced as software get
installed and upgraded on a tuned system.

Keywords: Operating system noise, jitter, interference, ker-
nel instrumentation, kernel profiling

I. INTRODUCTION

Operating system interference, caused primarily due to
scheduling of daemon processes, and handling of asyn-
chronous events such as interrupts, constitutes “noise” or
“jitter” (henceforth referred to as OS jitter) perceived by an
application. Various studies have taken place in the recent
past that demonstrate the debilitating effects of OS jitter
on parallel applications running on large scale HPC sys-
tems [1] [2] [3] [4]. Traditionally, large scale HPC systems
have avoided jitter by making use of a specialized light-weight
operating system on compute nodes [5] [6]. However, this
limits the use of such HPC systems as most applications,
which are written for commercial operating systems can not
be run on these systems. This has resulted in efforts to create
light-weight versions of commodity operating systems such
as Linux which can be used on compute nodes of large scale
HPC systems [7] [8] [9].

∗This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HR0011-07-9-0002

Creation of light-weight version of commodity operat-
ing system necessitates that a detailed study identifying the
sources of OS jitter and a quantitative measurement of their
impact on these operating systems be carried out. Most of
the studies on OS jitter, so far, have concentrated on the
effect of jitter on the scaling of parallel applications and have
not really delved into the issue of identifying the biggest
contributers to OS jitter. Apart from the well known ill effects
of operating system clock ticks or timer interrupts [1], there is
little data available about other system daemons and interrupts
that contribute to OS jitter. Furthermore, tuning an out of
the box commodity operating system is the first step towards
mitigating the effects of OS jitter. In the absence of any
quantitative information about the jitter caused by various
system daemons and interrupts, system administrators resort
to their established knowledge and other ad-hoc methods for
tuning a system for HPC applications. This process not only
requires highly knowledgeable system administrators, but is
also error prone given the fact that new versions of these
commodity operating systems get released at fairly regular
intervals and new sources of OS jitter get introduced in these
releases.

Identification of all possible sources of OS jitter and mea-
surement of their impact on an application requires a detailed
trace of the OS activity. Most of the existing general purpose
OS profiling tools, such as OProfile [10] or the Linux kernel
scheduler stats [11], provide a coarse measure in terms of time
spent in each kernel function or process and do not uniquely
measure the jitter perceived by an application due to each jitter
source. Other benchmarks developed specifically for studying
OS jitter such as the selfish detour benchmark [12] can be
used to measure OS jitter on a wide range of platforms and
study its effect on parallel program performance. However,
they do not provide any information about what daemons and
interrupts contribute to OS jitter and by how much.

In this paper, we present the design and implementation
of a tool that helps in identifying sources of OS jitter on
a commodity operating system such as Linux and can be
used to quantitatively measure the jitter contributed by var-
ious system daemons and interrupts. The tool combines the
techniques employed by micro-benchmarks used for studying
OS jitter with the profiling techniques used by kernel profiling
tools such as OProfile [10]. Our methodology comprises of
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a running a user-level micro-benchmark and measuring the
latencies experienced by the benchmark. We then associate
each latency to operating system daemons and interrupts
using data obtained from kernel instrumentation. The main
contributions of this paper are:

• Design and implementation of a tool that can be used to
identify all sources of OS jitter and measure their contri-
bution to the overall jitter experienced by an application.
This tool can also be used to identify scheduling patterns
of sources of OS jitter. It can be a very useful tool in
the context of cluster computing, as it can be deployed
to detect sources of jitter that cause a node to behave
anomalously once such anomalous nodes in a cluster have
been identified.

• Experimental results that help identify the biggest con-
tributers to the total OS jitter perceived by an application
on a commodity operating system such as Linux. To
the best of our knowledge, this is one of the first such
comprehensive studies. Our results reveal that while 63%
of the total jitter comes from timer interrupts, the rest
comes from various system daemons and interrupts, most
of which can be easily eliminated.

• Validation of the methodology through introduction of
synthetic daemons and their reliable detection, which
illustrates how the tool can be used to detect new sources
of OS jitter that get introduced as software get installed
and upgraded on a tuned system over a period of time.

The rest of this paper is organized as follows. In Section II
we give an overview of our methodology. We give a detailed
description of the implementation of our tool in Section III. We
present experimental results of running the tool on Linux and a
validation of our methodology in Section IV. This is followed
by a discussion of related work in this area in Section V.
Finally, we conclude in Section VI with a description of our
ongoing work and our future research directions.

II. METHODOLOGY

In this section, we describe our overall methodology: the
requirements for our tool and its design and implementation.

A. Requirements

OS jitter experienced by an application arises out of
scheduling of daemon processes, and handling of asyn-
chronous events such as interrupts. An interruption experi-
enced by an application can be due to any of the following:

(1) a particular daemon or an interrupt occurs when the
application is running and has a unique duration every
time it occurs; thereby causing an interruption of unique
duration to the application every time;

(2) a combination of daemons and interrupts occur in suc-
cession when the application is running, causing an
interruption to the application that is equal to the sum
of their individual execution times, every time that
combination occurs;

(3) two or more types of daemons or interrupts have equal
durations and occur at various times (not in succession)

when the application is running, causing interruptions of
equal duration to the application;

(4) two or more interrupts occur in a nested fashion, when
the application is running and the total interruption
experienced by the application is the sum of duration
of all the interrupts (the top level interrupt includes the
time taken by all its nested interrupts)

Our goal is to uniquely identify all the above in order to
account for all the interruptions experienced by an application.
It is also important to identify the daemons or interrupts that
occur frequently in succession (case 2 above), as they would
potentially lead to a significant interruption to the application
when they occur in succession, even though individually
they have a short duration. Case 3 can make it difficult to
distinguish one source of interruption from the other as they
have equal durations. This will be especially true if the kernel
activity trace is not fine grained. Any technique that relies
just on frequency domain methods will fail to identify such
patterns and will be unable to distinguish between these cases
(viz. case 2 and case 3 above).

B. Design

Our overall methodology consists of the following steps:
(1) instrument the kernel to record the start and end times

of all processes and interrupts;
(2) make the kernel data structures, that record start and end

times, visible to user-level applications;
(3) run a user-level application that:

a) reads the CPU timestamp register in a tight loop
(the critical section);

b) calculates the difference between successive read-
ings (timestamp deltas); and if the difference is
greater than some threshold, it adds the timestamp
delta to a histogram (henceforth referred to as the
user-level histogram);

c) reads the kernel data structures to find out what
processes and interrupts occurred (and for how
long) during the execution of the critical section
and prints this timeseries data (henceforth referred
to as scheduler and interrupt trace) along with the
user-level histogram to files;

(4) analyze the user-level histogram and the scheduler and
interrupt trace data, and trace the source of all the
interruptions observed by the user-level application to
a particular process or an interrupt or a combination of
processes and interrupts.

Our tool, that works on the above methodology consists of the
following four components:

(1) a kernel patch that executes the step 1 above;
(2) a character device and its driver (implemented as a

kernel module) that executes the step 2 above;
(3) a user-level micro-benchmark that executes the step 3

above; and
(4) a data analyzer program that executes the step 4 above.
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III. IMPLEMENTATION DETAILS

In this section, we give the implementation details about
each of the components outlined in the previous section.

A. Kernel Patch

We instrument the kernel (the schedule function and the
do IRQ interrupt handling function) to record the time stamps
for the start time and end time of each process and interrupt,
along with their names. The kernel records these timestamps
in an internal data structure and there is an array of such
data structures of a fixed length for both processes as well as
interrupts. There is also a pointer to the current valid index
in the array, where the next entry gets recorded. We have
packaged the kernel instrumentation changes as a patch which
is currently available for kernel versions 2.6.17.7 and 2.6.20.7
(Intel and PowerPC).

B. Device Driver Kernel Module

Once, the kernel is instrumented and starts recording the
scheduler and interrupt handling data, we need to access these
kernel data structures from the user-level application in a
manner that has minimal overhead. There are various ways of
achieving this. We can expose kernel data through the proc
file system or we can make use of a device driver whose
memory can be mapped to the kernel data structures. We make
use of the latter approach. We create a character device and
implement the device driver for that character device as a
kernel module. The device driver maps the device memory
(which is nothing but the kernel data structures) to user-level
in its mmap function call. Any user application can now just
open the device file and call mmap on it, like any normal file.
The resulting memory pointer now maps to the kernel data
structures.

C. User-level Micro-benchmark

The user-level micro-benchmark is based on the fixed work
quantum principle, and enhances other similar benchmarks
used for studying OS Jitter (such as the selfish detour bench-
mark [2] [12]). The pseudo code for the user-level benchmark
is given in Algorithm 1. The benchmark executes several
rounds, where each round consists of the following steps:

Step 1: The current valid index for scheduler and interrupt
trace arrays in the kernel is recored using the memory mapped
pointers to the already open device files.

Step 2: The CPU timestamp register is then read (using the
rdtsc instruction on Intel) in a tight loop (the critical section
- first for loop in Algorithm 1), recording the observations.
Each loop consists of a configurable number of iterations (N).
By default, we run it for 16 MB iterations. Higher the value
of N, the larger the number of samples that can be collected,
and higher are the chances of incurring cache misses, TLB
misses and page faults.

Step 3: The current valid index for interrupt and scheduler
arrays is read again. The contents of the two arrays in the
kernel between the two readings of current valid index are
then read. This consists of the names, and start and end times

of all the processes and interrupt handlers that got scheduled
during the execution of the loop. This information is written
to a scheduler trace file and an interrupt trace file.

Step 4: The timestamp data generated in the loop is then
processed, and the difference between successive readings
is calculated. These deltas represent the number of cycles
required to read the timestamp register. If the difference is
greater than a threshold (we currently set it to be 10 times
the minimum difference observed) due to a process getting
scheduled, or an interrupt being handled or any other system
activity that takes the CPU away from the application, the
timestamp delta is added to a histogram (referred to as the
user-level histogram). Most of these deltas (around 99% of
them) would be very small and these correspond to the actual
number of cycles required for the rdtsc instruction (it is
roughly equal to 88 cycles on Intel Xeon - 0.03 microseconds
on a 2.8 GHz machine). However, when a daemon process
is scheduled or an interrupt is handled or combinations of
these two occur, the deltas are much higher. We improve
upon the selfish detour benchmark [2] [12] by ensuring
that the only instruction executed in the critical section is
the rdtsc instruction (and the additional instructions that are
part of the execution of the forloop) and all processing is
done outside the critical section. This reduces the variance
in timestamp deltas and helps us detect even the smallest of
interruptions accurately. We generate the user-level histogram
using a bucketing technique that makes use of variable width
bucket and inter-bucket distances. It accurately captures the
structure of the timeseries data by using additional buckets for
regions where there are more sample points and less number
of buckets for regions where there are a few sample points.
This finishes one round.

Step 5:The benchmark continues to execute for a user
specified period of time, executing these rounds and adding the
timestamp deltas to the user-level histogram created in the first
round. With this technique of splitting the execution in rounds,
it is possible to run the benchmark for really long durations
and collect a large number of samples without being limited by
memory size for storing samples. When the given time to run
elapses, the user-level histogram data for all rounds is written
to a file. Approximately 3/4th of the time in a round is spent in
writing all the data to file system and in generating histograms
from timeseries data. The actual sampling (from the timestamp
register) takes place only for the remaining 1/4th of the total
time of execution.

D. Data Analyzer Program

The user-level micro-benchmark, upon completion, pro-
duces the following 3 output files:

(1) a distribution file containing the user-level histogram;
(2) a time series file containing scheduler trace data (process

start and end times along with process names);
(3) a time series file containing interrupt trace data (interrupt

start and end times along with interrupt names);
A data analyzer program reads the above 3 files, and generates
a merged trace file that includes all those processes and

333



Algorithm 1 User-level Micro-benchmark
sptr = mmap(scheduler device file ptr);
iptr = mmap (interrupt device file ptr);
t1 = gettimeoftheday();
round=0;
while (elapsed time < period) do

round++;
/* start of kernel-level tracing */
start scheduler index = sptr→current index;
start interrupt index = iptr→current index;
/* critical section - reading the timestamp register*/
for (i = 0 to N) do

ts[i] = rdtsc();
end for
/* end of critical section */
end scheduler index = sptr→current index;
end interrupt index = iptr→current index;
/* end of kernel-level tracing */
/* calculation of timestamp deltas */
for i = 0 to N-1 do

ts[i] = (ts[i+1]-ts[i]);
end for
/* collecting scheduler and interrupt trace data*/
for start scheduler index : end scheduler index do

print to file(start time, end time, process name);
end for
for start interrupt index : end interrupt index do

print to file(start time, end time, interrupt name);
end for
/* generating user-level histogram from timestamp
deltas*/
if (round==1) then

create distribution (ts);
else

add to distribution (ts);
end if
t2 = gettimeoftheday();
elapsed time = t2 - t1;

end while

interrupts from files ( 2) and ( 3) above, that caused the user-
level micro-benchmark to experience a delay. These include:

• all the processes that got scheduled between any two
occurrences of the benchmark in the scheduler trace data;
and

• all the interrupts that were handled when the benchmark
was running (which is inferred from the scheduler trace
data).

While generating the merged trace file, the analyzer program
takes care of all the different cases identified in the require-
ments section (II-A) above.

The merged trace file is then used to generate a master
histogram which has the same buckets (in terms of the bucket
locations) as the user-level histogram (in file 1 above), but

the samples are taken from the merged trace file. While
we generate this master histogram, we also record various
statistics for each bucket (such as the contribution of each
process or interrupt or their combination to that bucket). This
new master histogram should ideally match the user-level
histogram, if all the interruptions experienced by the user
level benchmark come from either a different process getting
scheduled (a context switch) or an interrupt being handled. In
practice, it will not fully match as we don’t collect trace data
about cache misses, TLB misses and page faults. We make use
of the Parzen window method for density estimation (described
below) to compare these histograms.

The analyzer program can also generate a histogram for
each unique jitter source or just for each of the top 10
contributors to the overall jitter experienced by the user-level
micro-benchmark. The analyzer program can operate in two
modes: (a) a time domain mode , where it retains certain
timing information (which can be used to infer scheduling
patterns) such as what interrupts and processes get scheduled
in succession, and considers each combination as a unique
jitter source and maintains statistics about each of them or (b)
a frequency domain mode where it doesn’t retain any timing
information and maintains statistics only about the individual
daemons and interrupts (and not their combinations). The mas-
ter histogram (that closely matches the user-level histogram)
is generated in the time domain mode.

The master histogram of a system with any configuration
can be compared to a baseline master histogram (i.e. a master
histogram generated from the same system after it was opti-
mally tuned) to detect any new sources of OS jitter that may
have been introduced as software get installed and upgraded,
after the initial tuning. We make use of the Parzen window
method of kernel density estimation to plot and compare
master histograms corresponding to various configurations of
the same system.

Parzen window method for comparing histograms:
Parzen-window density estimation [13] is a non-parametric
estimation technique which uses the superposition of kernel
functions K(xi, σn) placed at each data point xi to estimate
the density P (x) in d-dimensions. Succinctly,

P̂n(x) =
1

n

n∑
i=1

1

hd
n

K(
x − xi

hn

) (1)

where, n is the total number of data points. The kernel function
(a commonly chosen kernel is the Gaussian PDF) satisfies the
property that, ∫

Rd

K(·) = 1 (2)

and hn > 0 is the so-called bandwidth parameter. With
increasing (decreasing) hn, one tends to get a smoother (less
smooth) estimate and this needs to be chosen with care [14].
It can be shown that the Parzen estimator is a consistent
estimator in the sense that P̂n(x) converges to P (x) as n →

∞.
Within the context of OS jitter, one may interpret the

interruptions experienced by an application (the user-level
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micro-benchmark in our case) as data points in 1-dimension
(time). A Parzen-Window based density estimate then provides
a robust representation of these interruptions and can be
used to compare master histograms and user-level histograms
as probability distributions. A Parzen window based density
estimation does not suffer from aliasing effects resulting from
discretization inherent in histogram based density estimation
(due to choice of number of bins, bin width, and equal versus
variable bin width). Discontinuities in the histogram based
density estimation are an artifact of the chosen bin locations
and they make it very difficult to grasp the structure of the
data.

IV. EXPERIMENTAL RESULTS

We conducted experiments to (1) identify various sources
of OS Jitter and measure their contribution to the overall jitter
experienced by an application for Linux run level 3; and (2)
validate our methodology by introducing synthetic daemon
processes and being able to clearly identify them by comparing
their master distributions

Our experiments were conducted on a machine with an
Intel(R) Xeon(TM) 2.80GHz CPU that had a cache size of
512 KB and I GB RAM. It ran Fedora Core 5 with kernel
version 2.6.17.7. The timer interrupt interval was configured
to be 10 milliseconds (i.e. 100 Hz).

A. Experiment 1: Identifying various sources of OS Jitter and
measuring their impact

In this experiment, we go through the steps described in
the methodology section and try to identify all sources of OS
Jitter. The results of this experiment can be used as a guideline
for tuning an out of the box Linux system.

We run the user-level micro-benchmark for an hour with a
value of N = 16MB at run level 3. It executes approximately
1800 rounds and the actual sampling of the timestamp register
takes place for 15 minutes. The master histogram generated
from the scheduler and interrupt trace files is compared with
the user-level histogram generated by the user-level micro-
benchmark.

The master histogram and the user-level histograms, plotted
as probability distributions using Parzen window method for
density estimation, are shown in Figure 1. The y-axis is a
logarithmic function of the number of samples in a bucket (the
frequency) and the x-axis is the interruption in microseconds.
The following observations can be made:

Observation 1: The master distribution and the user-level
distribution shows mismatch at certain portions. The left most
points (less than 1µs) in the user-level distribution most likely
arises due to cache misses, TLB misses and demand paging
requests. These points are absent in the master distribution
as it consists of only interruptions caused due to processes
and interrupts. The extreme right hand side of the user-level
distribution also has two peaks (around 4000µs and the last
one at 17000µs) which we are currently unable to account for.

Observation 2: The master distribution appears shifted to
the left as compared to the user-level distribution in certain
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Fig. 1. Comparing user-level timestamp distribution and the master distri-
bution generated from kernel trace data.

areas. This happens due to the following reason. The samples
in the master distribution account for only the actual time
taken for an interrupt to be handled or a process to run.
It doesn’t account for any overheads encountered during
interrupt handling or context switching. Therefore the values
in the master distribution are always lesser than the values
in the user-level distribution by some cycles (as the user-
level distribution consists of end latencies perceived by the
user-level benchmark). This shows up in the graph as a left
shift in the master distribution. This shift is more visible in
the left side of the graph and becomes less prominent as we
move towards the right (as the overhead cycles are now a very
small percentage of the actual time taken by an interrupt or a
daemon).

The data analyzer program is run in the frequency domain
mode to generate statistics about all individual processes and
interrupts that contribute to jitter perceived by the user level
benchmark. These details are given in table I which is sorted
in the decreasing order of total jitter percentage. The biggest
offenders are at the top of the table. The timer interrupt
contributes to nearly 63% of all the jitter experienced by the
application. Most of the top offenders fall under the category
of frequently occurring small to medium interruptions. The
second biggest offender is the hidd daemon (the Bluetooth
Hardware Interface Device Daemon) that starts up the blue-
tooth service. This is unlikely to be used by most HPC
applications and can be easily removed as it contributes to
nearly 9% of the total jitter. Most of the jitter sources that
cause infrequent but long interruptions (like hald- hardware
abstraction layer daemon, crond, atd and runparts daemons -
all used for scheduling jobs, cupsd - common unix printing
system daemon) occur in the bottom half of the table and can
also be easily eliminated. Jitter caused due to kernel threads
such as the journaling file system thread (kjournald), the block
device kernel thread (kblockd) and the kernel default worker
queue thread (events0) on the other hand is harder to eliminate.
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Noise Lowest Highest frequency mean total std total
Source Interruption(us) Interruption (us) (us) jitter(us) dev(us) jitter(%)
timer 9.74 1042.05 76997 14.7 1131522.36 828.1 63.27
hidd 4.52 364.31 3404 49.17 167375.21 3450.97 9.35

python 4.52 220.17 1337 106.58 142494.64 5985.53 7.96
haldaddonstor 4.52 364.31 1522 61.03 92892.55 3708.57 5.19

ide1 10.92 64.74 3364 21.57 72569.8 1256.24 4.05
events0 4.65 101.33 433 81.18 35152.02 4452.23 1.96

eth0 7.12 80.35 1122 24.17 27115.4 1584.66 1.51
automount 4.98 173.85 156 162.72 25383.71 8703.52 1.41
sendmail 5.19 364.31 159 146.69 23323.57 8714.47 1.30
pdflush 4.93 220.17 161 100.7 16213.35 6389.97 0.90
idmapd 6.27 364.31 147 71.07 10446.99 5064.51 0.58

init 5.67 160.75 156 56.65 8836.82 3210.1 0.49
kblockd0 5.83 220.17 82 99.11 8127.18 6298.97 0.45
kjournald 0.92 154.15 181 39.61 7169.62 3531.18 0.40

kedac 4.7 110.16 705 9.71 6843.7 787.98 0.38
hald 348.69 363.31 13 353.48 4595.28 19435.05 0.25

watchdog0 0.92 7.67 735 5.47 4022.33 291.58 0.22
crond 6.01 164.43 18 91.21 1641.8 5460.71 0.09

syslogd 48.1 58.32 24 51.36 1232.68 2773.01 0.06
cupsd 117.92 349.48 2 236.06 472.12 19563.9 0.02

atd 130.07 134.3 3 132.09 396.28 8545.5 0.02
smartd 57.44 81.97 3 73.08 219.25 4781.35 0.01

runparts 160.76 164.43 1 164.24 164.24 0 0.01
xfs 36.34 36.86 1 36.49 36.49 0 0.002

TABLE I
SOURCES OF OS JITTER ON LINUX (FEDORA CORE 5) RUNNING IN RUN LEVEL 3
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Fig. 2. Histogram buckets from the master distribution in the 11 − 13µs

range.

In order to find out what daemons and interrupts contribute
to a particular interruption peak in the master distribution
graph, we can zoom into any of the peaks and look at the
contents of the underlying histogram buckets. The histogram
buckets corresponding to the 11-13 microsecond peak are
shown in Figure 2. We can observe that in this range, the
timer interrupt causes nearly 100% of the jitter. On the other
hand, the buckets in the 100-110 microsecond peak (figure 3)
illustrate that the haldaddonstor daemon contributes to most
of the jitter in this range.
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range.

B. Experiment 2: Validation of the methodology through in-
troduction of synthetic daemons

The goal of this experiment is to verify that our methodol-
ogy works and it can be used to detect any new source of OS
jitter (that get introduced as software get upgraded, or added)
even after initial tuning of the system has been done.

In this experiment we introduce synthetic daemons that
exhibit the following different characteristics:
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(1) a single daemon process, that has a periodicity of 10 sec-
onds, and executes a loop that that takes approximately
2500 microseconds to finish before it goes off to sleep.

(2) two daemon processes, each of which have a periodicity
of 10 seconds and start at the same time. They also
execute a loop of duration 1200 microseconds each, and
then sleep.

(3) two daemon processes, one having a periodicity of
10 seconds and another having a periodicity of 10.5
seconds. They start at the same time and execute similar
work of duration 2500 microseconds and then sleep.

We have chosen the above three cases as they can be used to
simulate the following three scenarios in which jitter sources
can affect an application.

(1) A single daemon process, having a unique duration, will
get scheduled by itself and sometimes in combination
with other daemons. The duration of the daemon will
appear as an interruption of unique duration to the
application.

(2) Two daemon processes, that start at the same time, take
the same amount of time to do their work and have
the same periodicity will most likely get scheduled in
succession (especially if their priorities are higher than
other processes) and their total time of execution will
appear as jitter to the application.

(3) Two daemon processes, that start at the same time, take
the same amount of time to do their work and have
different periodicity will get scheduled by themselves
most of the time (and only rarely in succession). The
individual times taken by them to finish their work
(which in this case are the same) will appear as jitter
to the application.

The above three scenarios correspond to the four scenarios
described in section II-A, which describe how jitter can affect
an application. The only scenario that we currently do not
simulate is the one that involves nested execution of interrupts.

1) Experiment 2.1: Single synthetic daemon: In this exper-
iment we start a synthetic daemon process at the same time
as the user-level micro-benchmark. The synthetic daemon has
a periodicity of 10 seconds. After every 10 seconds, it does
work that takes approximately 2500 microseconds to finish.
This work can be any operation. We have chosen it to be
Linear Congruential Generator (LCG) operation defined by
the recurrence relation:

x(j+1) = (a * x(j) + b) mod p

To ensure that the synthetic daemon does not get descheduled
by another process before finishing its work, it raises its
priority to the maximum real time priority. After completing
the work, it reduces its priority back to normal and goes off
to sleep.

We run this experiment for an hour at run level 3 and with
N=16 MB for the user-level micro-benchmark. We generate
the master distribution for this run and compare it with the
master distribution for the default run level 3 (from experiment
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Fig. 4. Comparison of master distributions: default run level 3 and single
synthetic daemon
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1) without the synthetic daemon process. We plot both these
distributions, using Parzen window method for kernel density
estimation. This is shown in Figure 4. The peak for the
jitter caused by the synthetic daemon can be clearly observed
around 2500 microseconds (surrounded by a dotted rectangle).
Next, we zoom into this peak in the master distribution of this
run to find out what daemons contribute to this peak. The
histogram buckets corresponding to this peak are shown in
Figure 5. The synthetic daemon binary is called “dummydae-
mon1”. The analyzer program concatenates all sources of jitter
that occur in succession with an underscore (“ ”).

2) Experiment 2.2: Two synthetic daemon processes with
different periodicity: In this experiment, we start two synthetic
daemon processes at the same time as the user-level micro-
benchmark. These synthetic daemon processes are identical to
the synthetic daemon process in experiment 2.1 except that
one of them has a periodicity of 10.5 seconds. The difference
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Fig. 6. Comparison of master distributions: default run level 3 and two
synthetic daemons with different periodicity

in the periodicity prevents these two synthetic daemons to be
scheduled in succession. As in the previous experiment, we run
this experiment for an hour in run level 3 and with N=16 MB
for the user-level micro-benchmark. The master distribution
for this run and that for default run level 3 are plotted using
Parzen window method. This is shown in Figure 6. The peak
for the jitter caused by the two synthetic daemons can be
observed around 2500 microseconds (surrounded by a dotted
rectangle). When we zoom into this peak, we find out that
there are two main contributors to this peak: the two synthetic
daemons - “dummydaemon1” and “dummydaemon2” (as com-
pared to just a single synthetic daemon in experiment 1). The
histogram buckets corresponding to this peak are shown in
Figure 7. The interesting thing to note in this experiment
is that even though two daemons each with an execution
time of 2500 microseconds are running (as compared to a
single daemon with an execution time of 2500 microseconds
in experiment 2.1), the number of interruptions experienced by
the application do not get doubled because of the difference
in periodicity of the two synthetic daemons.

3) Experiment 2.3: Two synthetic daemon processes with
same periodicity: This experiment is similar to experiment
2.2, except that both the synthetic daemon processes have
the same periodicity of 10 seconds and each one of them
takes only around 1200 microseconds to finish their work.
This is done to ensure that these two synthetic daemons get
scheduled in succession and the jitter perceived by the user-
level micro-benchmark is the sum of the time taken by these
daemons (i.e. 2500 microseconds, thereby ensuring that the
jitter experienced by the benchmark is similar to that in the
previous two cases).

This experiment is also run for one hour in run level 3
and with N=16 MB for the user-level micro-benchmark. The
master distribution for this run and that for the default run
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Fig. 8. Comparison of master distributions: default run level 3 and two
synthetic daemons with same periodicity

level 3 are shown in Figure 8. The peak for the jitter caused
by the two synthetic daemons can be observed around 2500
microseconds. When we zoom into this peak, we find that
majority of this peak is being contributed by a single jitter
source - “dummydaemon1 dummydaemon2”. The histogram
buckets corresponding to this peak are shown in Figure 9.

V. RELATED WORK

Several groups in industry and academia have looked at
the problem of OS jitter. Most of the studies on OS sys-
tem jitter, so far, have concentrated either on measuring
overall jitter experienced by an application [1] [2] [12] or
on estimating the effect of jitter on the scaling of parallel
applications [15] [3] [4]. These studies have not really delved
into the issue of who are the biggest contributers to OS jitter.
There has been some work done towards identifying sources
of OS jitter. Petrini et al. identified sources of OS jitter that
affected optimal performance on ASCI Q [15]. However, their
analysis was limited to that cluster configuration and they
did not give details of their methodology. Furthermore, they
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clubbed all kernel activity as one, whereas this paper presents
a methodology that can be used to measure the impact of each
individual sources of jitter within the kernel. In a follow up
paper [16], they described a generic methodology, like ours,
that made use of OProfile [10] and kernel instrumentation to
identify sources of OS jitter. They restricted their analysis to
interrupts and did not describe how new sources of jitter could
be detected.

In another work, Tsafrir et al. studied OS noise, more specif-
ically the impact of OS timer interrupts on parallel application
performance [17]. Their methodology for determining the
jitter component also revolves around micro benchmarking the
kernel through use of accurate timers. In terms of the design
of the technique, it is similar to ours and presents a much
more comprehensive analysis of the effect of timer interrupts.
However, the value provided by our tool lies not only in
the identification all sources of OS jitter and measuring their
impact but also in comparison of various configurations of a
system to detect new sources of jitter that can get introduced
as software get installed and upgraded. We show what are the
daemons and interruptions that occur in an “out of the box”
system configured with default run level configuration, and
what is their contribution to total jitter.

The technique of sampling the timestamp register at a very
high rate in a loop based on the fixed work quantum principle,
has been used in various benchmarks for studying OS jitter
[2] [12] [18]. We use a similar benchmark loop for collecting
timing samples. We enhance this benchmark in two ways.
First, we add a kernel tracing mechanism that allows us to
associate each interruption to an operating system daemon or
interrupt. Second, we ensure that the only instruction executed
in the critical loop is the instruction that reads the timestamp
register (and some additional instructions that constitute the for
loop itself). All processing of timing samples is done outside
the critical section. This reduces the variance in timestamp
deltas and helps us detect even the smallest of interruptions

accurately.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented the design and implementation
of a tool that can be used to identify sources of OS jitter
and quantitatively measure their contribution to the total jitter
experienced by an application. We presented experimental
results of running the tool on Linux in run level 3 and
gave details about the top contributers to OS jitter. Our
results revealed that while 63% of the total jitter comes from
timer interrupts, the rest comes from various system daemons
and interrupts, most of which can be easily eliminated. We
also presented an experimental validation of our methodology
through the introduction of synthetic daemons and described
how our tool can be used to detect new sources of OS jitter
that get introduced, as software get installed and upgraded on
a tuned system.

The tool presented in this paper does not collect any
information about cache misses, TLB misses and page faults.
We have already enhanced our kernel patch to collect data
about page faults and have conducted some preliminary exper-
iments. We intend to do the same with cache misses and TLB
misses. On platforms that have a virtualization layer (like the
PowerPC), the contribution of virtualization to OS jitter also
needs to be accounted for. We also intend to run our tool on
the new tickless kernels and measure the total jitter on them.

One of the limitations of the current tool is that it prints
the kernel instrumentation data to files in each round and
the processing of these files to create master distributions is
done as a post processing step. We intend to integrate the data
analyzer program with the user-level micros benchmark so that
the processing of kernel instrumentation data can be done at
the end of each round itself to create the master distributions.
This will allow the tool to be run for really long hours (may
be days) without worrying about the length of the trace files,
and detect those sources of OS jitter whose periodicity is of
the order of days. We are also currently involved in deploying
this tool as part of a larger toolkit that can identify anomalous
nodes in a cluster and point to sources of OS jitter that cause
such nodes to behave anomalously.
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