
Impact of Noise on Scaling of Collectives:
An Empirical Evaluation

Rahul Garg and Pradipta De

IBM India Research Laboratory, Hauz Khas, New Delhi 110 016,
grahul@in.ibm.com, pradipta.de@in.ibm.com

Abstract. It is increasingly becoming evident that operating system interference
in the form of daemon activity and interrupts contribute significantly to perfor-
mance degradation of parallel applications in large clusters. An earlier theoretical
study has evaluated the impact of system noise on application performance for
different noise distributions [1]. Our work complements the theoretical analysis
by presenting an empirical study of noise in production clusters. We designed a
parallel benchmark that was used on large clusters at SanDeigo Supercomputing
Center for collecting noise related data. This data was fed to a simulator that pre-
dicts the performance of collective operations using the model of [1]. We report
our comparison of the predicted and the observed performance. Additionally, the
tools developed in the process have been instrumental in identifying anomalous
nodes that could potentially be affecting application performance if undetected.

1 Introduction

Scaling of parallel applications on large high-performance computing systems is a well
known problem [2–4]. Prevalence of large clusters, that uses processors in order of thou-
sands, makes it challenging to guarantee consistent and sustained high performance. To
overcome variabilities in cluster performance and provide generic methods for tuning
clusters for sustained high performance, it is essential to understand theoretically, as
well as using empirical data, the behavior of production mode clusters. A known source
of performance degradation in large clusters is the noise in the system in the form of
daemons and interrupts [2, 3]. Impact of OS interference in the form of interrupts and
daemons can even cause an order of magnitude performance degradation in certain op-
erations [2, 5].

A formal approach to study the impact of noise in these large systems was initiated
by Agarwal et al. [1]. The parallel application studied was a typical class of kernel that
appears in most scientific applications. Here, each node in the cluster is repetitively
involved in a computation stage, followed by a collective operation, such as barrier.
This scenario was modeled theoretically, and impact of noise on the performance of the
parallel applications was studied for three different types of noise distributions.

In this paper, our goal is to validate the theoretical model with data collected from
large production clusters. Details revealed through empirical study helps in fine-tuning
the model. This allows us to establish a methodology for predicting the performance of
large clusters. Our main contributions are: (i) We have designed a parallel benchmark
that measures the noise distribution in the cluster; (ii) Using data collected from the

production clusters we make performance predictions made by the theoretical model
proposed earlier. This validation step enables us to predict the performance of large
clusters. We report the prediction accuracy against measurements at the SanDiego Su-
percomputing Center (SDSC). We discovered that measurements of noise distributions
also help in identification of misbehaving nodes or processors.

In addition to making performance predictions, our study could be useful in perfor-
mance improvements. Traditional techniques for performance improvement either fall
in the category of noise reduction or noise synchronization. Noise reduction is achieved
by removing several system daemons, dedicating a spare processor to absorb noise, and
reducing the frequency of daemons. Noise synchronization is achieved by explicit co-
scheduling or gang scheduling [6–8]. Most of these implementations require changing
the scheduling policies. Our work gives insight into another technique for improving
performance, that can be called noise smoothing. If the model predicts the actual per-
formance reasonably well, then the systems can be tuned to ensure that the noise does
not have heavy tail (i.e. infrequent interruptions that take long time). This technique
may complement the other approaches currently used in large high-performance sys-
tems.

The rest of the paper is organized as follows. The theoretical model for capturing
the impact of noise on cluster performance, based on [1], is presented in Section 2.
In Section 3, we present the details of the parallel benchmark that we have designed.
Section 4 presents the analysis of the data collected on the SDSC clusters. Finally, we
conclude in Section 5.

pre−barrier

do_work ()

for i = 1 to M

barrier ()

compute

noise

endfor
post−barrier

Fig. 1. Typical code block in a parallel scientific application.

2 Theoretical Modeling of System Noise

In this section, we briefly introduce the theoretical model of collective communication,
as described earlier in [1]. In this model, a parallel program consists of a sequence of
iterations of a compute phase followed by a communicate phase, as shown in Figure 1.
In the compute phase, all the threads of the program locally carry out the work assigned
to them. There is no message exchange or I/O activity during the compute phase. The
communicate phase consists of a collective operation such as a barrier. We are interested
in understanding the time it takes to perform the collective operation as a function of
the number of threads in the system.

Consider a parallel program with N threads running on a system that has N proces-
sors. We assume, for simplicity of analysis, that N = 2k − 1 for some positive integer

End of Pre−Barrier,
Start of Post−Barrier

t
s
i j t i j

f

Start of Post−Barrier

t j
p

i ja

t j
q

t j
e

Compute

Idle

Logical connectivity among processes
3

4

6

2

5

7

P
ro

ce
ss

 I
d

Timeline

542

3

1

6

7

Noise
Post−Barrier Communication
Pre−Barrier Communication

������

����

������

������

����

������

��������������

��������������

��������������

����

Pre−Barrier

1

��������������

��������

��
��
��
��
��
��

��
��
��
��
��
��

Post−Barrier

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��������

Fig. 2. The diagram shows a typical computation-barrier cycle, along with pre-barrier
and post-barrier phases for a barrier call, and interruptions in compute phase due to
system noise.

k. Figure 2 shows the sequence of events involving one iteration of the loop in Figure
1. In this figure, we used 7 processors which are logically organized as a binary tree
to demonstrate the operation of one iteration of the parallel code. Figure 2 shows the
decomposition of the communicate phase into pre-barrier and post-barrier stages, and
the interruptions introduced during compute phase by the triggering of noise. In the
figure, tsij denotes the start time of the compute phase, tfij denotes the finish time of the
compute phase, and teij denotes the end of the barrier phase of the iteration.

2.1 Modeling the Communication Phase

The barrier operation comprises of two stages: a pre-barrier stage succeeded by a post-
barrier stage. We assume that these stages are implemented using message passing
along a complete binary tree, as shown in Figure 2. The basic structure does not change
for any implementation based on a fixed tree of bounded degree, such as a k-ary tree. A
process is associated to each node of the binary tree. A special process, called the root
(Process 1 in Figure 2) initiates the post-barrier stage and concludes the pre-barrier
stage. In the post-barrier stage, a start-compute-phase message initiated by root is per-
colated to all leaf nodes. At the end of computation each node notifies its parents of
completion of work. This stage ends when the root finishes its computation and re-
ceives a message from both its children indicating the same. An iteration of the loop in
Figure 1 would thus consist of a compute stage, followed by a pre-barrier and a post
barrier stage. Let tpj denote the start of the post-barrier stage just preceding the j-th
iteration, and tqj denotes the time at which the post-barrier stage of the j-th iteration
concludes, as shown in Figure 2. Following tqj , the iteration can continue with other
book-keeping operations before beginning the next iteration. Also, the time taken by a
barrier message to reach node i in the post-barrier phase is denoted by aij .

For simplicity, we assume that each message transmission between a parent and
a child node takes time τ, which is referred to as the one-way latency. Thus, for the
root process (process id 1) this value is zero, i.e. a1j = 0 in Fig 2. For all the leaves

i, aij = τ(log(N + 1) − 1)1. Thus, for the case of N = 7 in the figure, a2j = 2τ ,
a3j = τ , a4j = 2τ , a5j = 2τ , a6j = τ , and a7j = 2τ , for all j.

2.2 Modeling the Compute Phase

Let Wij represent the amount of work, in terms of number of operations, carried out by
thread i in the compute phase of j-th iteration. If the system is noiseless, time required
by all processors to finish the assigned work will be constant, i.e. time to complete
work Wij is wij . The value of the constant typically depends on the characteristics of
the processor, such as clock frequency, architectural parameters, and the state of the
node, such as cache contents. Therefore, in a noiseless system the time taken to finish
the computation is, tfij − tsij = wij .

Due to presence of system level daemons that are scheduled arbitrarily, the wall-
clock time taken by processor i to finish work Wij in an iteration varies. The time
consumed to service daemons and other asynchronous events, like network interrupts,
can be captured using a variable component δij for each thread i in j-th iteration. Thus,
the time spent in computation in an iteration can be accurately represented as,

tfij − tsij = wij + δij

where δij is a random variable that captures the overhead incurred by processor i in
servicing the daemons and other asynchronous events. Note that δij also includes con-
text switching overheads, as well as, time required to handle additional cache or TLB
misses that arise due to cache pollution by background processes. The characteristics
of the random variable δij depends on the work Wij , and the system load on processor
i during the computation. The random variable δij models the noise on processor i for
j-th iteration, shown as the noise component in Figure 2.

2.3 Theoretical Results

The theoretical analysis of [1] provides a method to estimate the time spent at the barrier
call. We will show here that the time spent at the barrier can be evaluated indirectly by
measuring the total time spent by a process in an iteration, that consists of the compute
and communicate phases. The time spent by a process in an iteration may be estimated
by the amount of work, noise distributions and the network latencies.

In this analysis we make two key assumptions of stationarity and spatial indepen-
dence of noise. Since we assume that our benchmark is run in isolation, therefore only
noise present is due to system activity. This should stay constant over time, giving sta-
tionarity of the distribution. Secondly, the model in [1] assumes that the noise across
processors is independent (i.e. δij and δkj are independent for all i, j, k). Thus there
cannot be any co-ordinated scheduling policy to synchronize processes across different
nodes.

The time spent idling at the barrier call is given by,

bij = teij − tfij (1)

1 From here on, log refers to log2 and ln refers to loge

We first derive the distribution of (tqj − tpj), and then use it to derive the distribution of
bij . From the figure it can be noted that, (tqj − tpj) depends on aij , wij , and the instances
of the random variable δij . Now, if the network latencies are constant (τ), it is easy to
verify that, if aij ≤ τ log((N + 1)/2),∀(i, j),. Thus we have,

Lemma 1. For all j, maxi∈[1...N] t
f
ij − tsij ≤ tqj − tpj ≤ maxi∈[1...N](t

f
ij − tsij) +

2τ log((N + 1)/2).

We model (tqj − tpj) as another random variable θj . Now, Lemma 1 yields,

Theorem 1. For all iterations j, the random variable θj may be bounded as2,

max
i∈[1...N]

(wij + δij) ≤ θj ≤ max
i∈[1...N]

(wij + δij) + 2τ log((N + 1)/2).

For a given j, all δij are independent for all i. Thus if we know the values of wij

and the distributions of δij , then the expectations as well as the distributions of θj

may be approximately computed as given by Theorem 1. For this, we independently
sample from the distributions of wij + δij for all i and take the maximum value to
generate a sample. Repeating this step a large number of times gives the distribution of
maxi∈[1...N](wij + δij). Now, bij can be decomposed as (see Figure 2)

bij = (tqj − tpj)− (tfij − tsij)− (ai(j+1) − aij) (2)

Since we have assumed a fixed one-way latency τ , aij = ai(j+1) = τ , therefore distri-
bution of barrier time bij is given by,

θj − (wij + δij)

Using Theorem 1, θj can be approximately computed to within 2τ log((N + 1)/2)
just by using wij and δij . Therefore, the barrier time distribution can be computed just
by using noise distribution and wij . If wij are set to be equal for i, then wij cancels out,
and barrier time distribution can be approximated just by using δij .

In this paper we attempt to validate the above model by comparing the measured
and predicted performance of the barrier operations on real systems. We evaluate if The-
orem 1 can be used to give a reliable estimate of collectives performance on a variety of
system. For this, we designed a micro-benchmark that measures the noise distributions
δi(w). The benchmark also measures the distribution of θj , by measuring teij − tsij . We
implemented a simulator that takes the distributions of wij + δij as inputs, and outputs
the distribution of maxi∈[1...N](wij + δij). We compare the simulation output with the
actual distribution of θj obtained by running the micro-benchmark. We carry out this
comparison on the Power 4 cluster at SDSC with different values of work quanta, wi.

3 Methodology for Empirical Validation

Techniques to measure noise accurately is critical for our empirical study. This section
presents the micro-benchmark kernel used to measure the distributions. We first tested
this benchmark on a testbed cluster and then used it to collect data on the SDSC cluster.

2 For random variables, X and Y , we say that X ≤ Y if P (X ≤ t) ≥ P (Y ≤ t), ∀t.

Algorithm 1 The Parallel Benchmark kernel
1: while elapsed time < period do
2: busy-wait for a randomly chosen period
3: MPI Barrier
4: tsij = get cycle accurate time
5: do work (iteration count)
6: tfij = get cycle accurate time
7: MPI Barrier
8: teij = get cycle accurate time
9: store (tfij − tsij), (t

e
ij − tfij), (t

e
ij − tsij)

10: MPI Bcast (elapsed time);
11: end while

3.1 Parallel Benchmark (PB)

The Parallel Benchmark (PB)3 aims to capture the compute-barrier sequence of Figure
1. The kernel of PB is shown in Algorithm-1. The PB executes a compute process
(Line 5) on multiple processors assigning one process to each processor. The do work
can be any operation. We have chosen it to be a Linear Congruential Generator (LCG)
operation defined by the recurrence relation,

xj+1 = (a ∗ xj + b) mod p. (3)

A barrier synchronization call (Line 7) follows the fixed work (Wi). The time spent in
different operations are collected using cycle accurate timers and stored in Line 9. In
the broadcast call in Line 10 rank zero process sends the current elapsed time to all
other nodes ensuring that all processes terminate simultaneously. Daemons are usually
invoked with a fixed periodicity which may lead to correlation of noise across iterations.
The random wait (Line 2) is intended to reduce this correlation. The barrier synchro-
nization in Line 3 ensures that all the processes of the PB commence simultaneously.

Since the benchmark measures the distributions δi(W) for a fixed W we omit the
subscript j that corresponds to the iteration number in the subsequent discussion.

3.2 Testing the Parallel Benchmark

We first study the PB on a testbed cluster. The testbed cluster has 4 nodes with 8 proces-
sors on each node. It uses identical Power-4 CPUs on all nodes. IBM SP switch is used
to connect the nodes. The operating system is AIX version 5.3. Parallel jobs are sub-
mitted using the LoadLeveler4 and uses IBM’s Parallel Operating Environment (POE).
The benchmark uses MPI libraries for communicating messages across processes.

The goal in running on the testbed cluster was to fine-tune the PB for use on larger
production clusters. We first execute the code block as shown in Algorithm 1 on the

3 We refer this benchmark as PB, acronym for Parallel Benchmark, in the rest of the paper.
4 The LoadLeveler is a batch job scheduling application and a product of IBM.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

Fig. 3. Distribution of time taken in an
iteration for computation and barrier us-
ing the Parallel Benchmark code shown
in Fig 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1010 1020 1030 1040 1050 1060

P
ro

ba
bi

lit
y

[F
(x

)
]

Total time for compute and barrier operation (us)

Fig. 4. Distribution of time taken in an it-
eration for computation and barrier oper-
ation using random wait, but no broadcast
during execution.

testbed cluster, and record the distributions of (tfi − tsi) ∼ wi + δi, tei − tfi = bi, and
(tei − tsi) ∼ θ. Figure 3 shows the distribution of θ ∼ (tej − tsj) (Section 2.3) for PB.
Ideally, the distributions for all processes (i.e. for all i) should exactly match, assuming
ai(j+1) = aij ,∀i, j. Interestingly, whenever broadcast was enabled in our experiment,
the distributions were different. There were 4 bands formed, which we correspond to
the 4 different nodes of the cluster. Figure 4 shows the distributions are identical when
the broadcast in Line 10 of Figure 1 was omitted.

Work

Process 2

Process 1

Barrier

Broadcast

B
ar

rie
r

Barrier B
ar

rie
r

Fig. 5. Sequence of message exchange in a work-barrier-broadcast loop.

In order to explain this discrepancy we closely looked at the implementation of bar-
rier. Barrier is implemented in two steps: a shared memory barrier which synchronizes
all the processes on a node, followed by message passing implementation that synchro-
nizes across nodes. The message passing implementation across the nodes is not based
on binary tree as assumed in the model described earlier. We illustrate the message pass-
ing mechanism for barrier synchronization in Figure 5 for a case with two processes.
As soon as a barrier is called on a process, a message is sent to the other process. The
barrier call ends when the process receives a message from the other process. Broadcast
is implemented by sending a single message. Figure 5 shows the message exchange be-

tween the two processes, and the calculation of total time for an iteration. It can be seen
that if process 2 starts its work after process 1 then it consistently measures smaller
time per iteration. Adding random wait, desynchronizes the start time and mitigates the
above anomaly.

Finally, we also verified the stationarity assumption by executing PB multiple times
at different times of the day. As long as the PB is executed in isolation without any other
user process interrupting it the results stay unchanged.

3.3 Predicting Cluster Performance

We implemented a simulator that repeatedly collects independent samples from N
distributions of wi + δi (as measured by the PB), and computes the distribution of
maxi∈[1...N](wi + δi).

(a) (b)

Fig. 6. Comparing distribution of maxi∈[1...N](wi + δi) against distributions of tei − tsi
computed from empirical data on 32 processors of a testbed cluster, for (a) w = 300µs
and (b) w = 83ms.

Figure 6(a) and Figure 6(b) show the distributions of the time taken by an itera-
tion (θ) on 32 processors in our testbed cluster, along with the output of the simulator
(maxi∈[1...N](wi + δi)). Two different quanta values (w) of 300µs and 83ms, were
used to model small and large choice of work respectively. Since, in the simulation the
communication latency involved in the collective call is not accounted, hence the output
of the simulator is lower than the real distribution.

Interestingly, the accuracy of the prediction with larger quanta values is better even
without accounting for the communication latency. This is because when the quanta
value (W) is large, the noise component, δi(W) is also large thereby masking the com-
munication latency part.

4 Benchmark Results on SanDiego Supercomputing Center
(SDSC)

This section presents our observations from the data collected on the SanDiego Super-
computing Center’s DataStar cluster [9]. The DataStar compute resource at SDSC [9]
offers 15.6 TFlops of compute power. For our experiments, we used two combination of
nodes: (a) 32 8-way nodes with 1.5 GHz CPU, giving a total of 256 processors, and (b)
128 8-way nodes with a mix of 1.5 GHz and 1.7 GHz processors, giving a total of 1024
processors. The nodes are IBM Power-4 and Power-4+ processors. Each experiment is
executed for about 1 hour in order to collect a large number of samples. However, in
order to avoid storage of this large time series, we convert the data into discrete prob-
ability distributions with fixed number of bins. The distributions are used to compute
different statistics related to each experiment.

4.1 Benchmark Results on SDSC (256 processors on 32 nodes)

 305

 310

 315

 320

 325

 330

 0 50 100 150 200 250 300

T
im

e
in

 u
s

Process Id

99-th percentile

Fig. 7. This plot shows the values corre-
sponding to 99-th percentile in the distri-
bution of wi + δi for w = 300µs.

 290

 300

 310

 320

 330

 340

 350

 360

 370

 380

 390

 0 50 100 150 200 250 300

T
im

e
ta

ke
n

in
 u

s

Process Id

work-avg
work+barrier-avg

simulation-avg

Fig. 8. The plot shows the mean for three
distributions for each process: wi + δi,
which is the work-avg, tei − tsi , which is
the total time for iterations including bar-
rier wait, and maxi∈[1...N](wi + δi), for a
quanta of 300µs.

The PB was run on 256 processors spawning 32 nodes. All nodes and processors in
this experiment were identical.

The value corresponding to 99-th percentile in the distribution of wi + δi with w =
300µs is plotted in Figure 7. Next, we plotted the distribution of tei − tsi for all the
processes in Figure 9, along with the (predicted) distribution of maxi∈[1...N](wi + δi)
obtained using the simulator. It is seen that the simulation predicts the real distribution
very closely on this production cluster, except in the tail part of the distribution.

Fig. 9. Comparing distribution of maxi∈[1...N](wi + δi) against distributions of tei − tsi
for 256 processes, for wi = 300µs.

Further insight is revealed in Figure 8, which shows the average time for the distri-
butions of (wi + δi), tei − tsi , and maxi∈[1...N](wi + δi). It shows that the mean value
of maxi∈[1...N](wi + δi) is about 50µs less than the mean of tei − tsi distributions. This
is accounted by the communication latency, 2 ∗ τ ∗ log(N + 1)/2, which is calculated
to be 2 ∗ 5µs ∗ log(32)/2 = 40µs for the 32 node cluster in DataStar.

4.2 Benchmark Results on SDSC (1024 processors on 128 nodes)

We repeated the experiments on a larger cluster of 128 nodes with 1024 processors.
However, in this experiment there were 2 different sets of processor types.

 10000

 15000

 20000

 25000

 30000

 35000

 0 200 400 600 800 1000 1200

T
im

e
ta

ke
n

in
 u

s

Process Id

99-th percentile: SDSC 1024p : quanta 13 ms

(a) The graph shows the 99-th percentiles from
the distributions of (wi + δi) for 1024 pro-
cessors. There is a noticeable spike indicating
that some processors take significantly longer
to complete the computation phase.

 10000

 15000

 20000

 25000

 30000

 35000

 80 85 90 95 100

T
im

e
ta

ke
n

in
 u

s

Process Id

99-th percentile: SDSC 1024p : quanta 13 ms

(b) Zooming into the spiked area of Figure
10(a) shows that there are 8 processes on 1
particular node that is taking up significantly
longer to finish the work.

Fig. 10.

In Figure 10(a), we have plotted the 99-th percentile of (wi + δi) distribution for
each processor. It shows a spike around processor id 100. A zoom-in of the region be-
tween processor id 75 and 100 is shown in Figure 10(b). There are a set of 8 processors
starting from id 89 to 96 which takes significantly longer to complete its workload. All
these processors belong to a single node. This indicates that one node is anomalous
and slowing down rest of the processes in this cluster. We discussed this with the SDSC
system administrator who independently discovered problems with the same node (pos-
sibly after receiving user complaint). Our run on the 256 processor system had the same
problem (see Figure 7) due to the same node.

Finally, in Figures 11(a) and Figures 11(b) the prediction made by the simulator
is compared against the observed distribution. In this experiment, the match between
the predicted distribution of maxi∈[1...N](wi + δi) and the observed distribution is not
as good as in the previous experiment (for both the values of w = 300µs and w =
13ms). For the 300µs case, the mean of the maxi∈[1...N](wi + δi) was found to be
1.93ms, while the mean of the tei − tsi was in the range 2.54ms to 2.93ms (for different
processes i); while, for the 13ms case, the mean for maxi∈[1...N](wi + δi) distribution
was 23.191ms and the mean of the tei − tsi ranged from 24ms to 28.36ms. At present,
we are unable to explain this anomaly. We are conducting more experiments on different
systems to pinpoint the cause of this.

(a) (b)

Fig. 11. Comparing distribution of maxi∈[1...N](wi+δi) against distributions of (tei−tsi)
for 1024 processes for wi = 300µs and wi = 13ms on SDSC cluster.

5 Conclusion

High performance computing systems are often faced with the problem performance
variability and lower sustained performance compared to the optimal. It has been no-
ticed that system activities, like periodic daemons and interrupts, behave as noise for the
applications running on the large clusters and slows down the performance. If a single
thread of a parallel application is slowed down by the Operating System interference,

the application slows down. Hence it is important to understand the behavior of noise
in large clusters in order to devise techniques to alleviate them. A theoretical analysis
of the impact of noise on cluster performance was carried out by Agarwal et al. [1]. A
model for the behavior of noise was designed to predict the performance of collective
operations in cluster systems. In this paper, we have attempted to validate the model
using empirical data from a production cluster at SanDiego Supercomputing Center.
We have designed a benchmark for collecting performance statistics from clusters. Be-
sides providing the means to validate the model, the measurements from the benchmark
proved useful in identifying system anomalies, as shown in the the case of the SDSC
cluster.

6 Acknowledgment

Firstly, we would like to thank SanDeigo Supercomputing Center (SDSC) who pro-
vided us substantial time on their busy system for our experiments. We would like to
thank Marcus Wagner for helping us in collecting the data from the SanDiego Super-
computing Center. Thanks to Rama Govindaraju and Bill Tuel for providing us with
insights on the testbed cluster we have used for fine-tuning the parallel benchmark and
helping us in collecting the data.

References

1. S. Agarwal, R. Garg, and N. K. Vishnoi, “The Impact of Noise on the Scaling of Collectives,”
in High Performance Computing (HiPC), 2005.

2. T. Jones, L. Brenner, and J. Fier, “Impacts of Operating Systems on the Scalability of Parallel
Applications,” Lawrence Livermore National Laboratory, Tech. Rep. UCRL-MI-202629, Mar
2003.

3. R. Giosa, F. Petrini, K. Davis, and F. Lebaillif-Delamare, “Analysis of System Overhead on
Parallel Computers,” in IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT), 2004.

4. F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing Supercomputer Perfor-
mance: Achieving Optimal Performance on the 8192 Processors of ASCI Q,” in ACM Super-
computing, 2003.

5. D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System Noise, OS Clock Ticks,
and Fine-grained Parallel Applications,” in ICS, 2005.

6. J. Moreira, H. Franke, W. Chan, L. Fong, M. Jette, and A. Yoo, “A Gang-Scheduling System
for ASCI Blue-Pacific,” in International Conference on High performance Computing and
Networking, 1999.

7. A. Hori and H. Tezuka and Y. Ishikawa, “Highly Efficient Gang Scheduling Implementations,”
in ACM/IEEE Conference on Supercomputing, 1998.

8. E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll, “STORM: Lightning-Fast
Resource Management,” in ACM/IEEE Conference on Supercomputing, 2002.

9. “DataStar Compute Resource at SDSC.” [Online]. Available:
http://www.sdsc.edu/user services/datastar/

