
VirtualWire: A Fault Injection and Analysis Tool for Network Protocols

Pradipta De Anindya Neogi Tzi-cker Chiueh
Experimental Computer Systems Laboratory

Computer Science Department
State University of New York at Stony Brook, Stony Brook, NY 11794-4400

�prade, neogi, chiueh�@cs.sunysb.edu

Abstract
The prevailing practice for testing protocol implemen-

tations is direct code instrumentation to trigger specific
states in the code. This leaves very little scope for
reuse of the test cases. In this paper, we present the
design, implementation, and evaluation of VirtualWire,
a network fault injection and analysis system designed
to facilitate the process of testing network protocol im-
plementations. VirtualWire injects user-specified network
faults and matches network events against anticipated
responses based on high-level specifications written in a
declarative scripting language. With VirtualWire, testing
requires no code instrumentation and fault specifications
can be reused across versions of a protocol implemen-
tation. We illustrate the effectiveness of VirtualWire with
examples drawn from testing Linux’s TCP implementa-
tion and a real-time Ethernet protocol called Rether. In
each case, �� to �� lines of script is sufficient to specify
the test scenario. VirtualWire is completely transparent
to the protocols under test, and additional overhead in
protocol processing latency it introduces is below 10%
of the normal.

1. Introduction

Network protocols specify the rules of engagement
among multiple parties over the network. Formal veri-
fication methods [1] can detect specific design flaws in
protocol specifications. Simulation tools, like VINT and
REAL [2], [3] can model the protocol behaviors under
various system parameters and workload conditions.
However, neither of the methods can be used satis-
factorily to guarantee network protocol implementation
correctness. The main challenge in testing a protocol
implementation is to guarantee that the protocol behavior
conforms to the specifications in the presence of any
abnormal network condition generated due to drop,
delay, duplication, reordering or modification (corrup-
tion) of a packet. In the absence of a protocol testing
infrastructure, developers are forced to instrument the
network protocol implementations to “simulate” the in-
tended abnormalities, and analyze the resulting outputs
against desired responses as specified by the protocol
specifications. Direct code instrumentation is not only a
slow process but also entails the danger of introducing
or hiding subtle bugs. Worse yet, each new release of

the same protocol often requires recreating the test cases
afresh.

We experienced the difficulties and effort involved in
testing a network protocol implementation, while veri-
fying the implementation of Rether [4], [5], a software-
based real time Ethernet protocol. Rether is a software-
based token passing protocol that regulates network
nodes’ access to a shared bus or a wireless channel.
There is a control token circulating among the network
nodes, and a node on the shared medium is allowed
to transmit data only when it is in possession of the
control token. Since a node or link failure may result in
the network having either no token or multiple tokens,
Rether incorporates elaborate mechanisms to keep a
single token in circulation in spite of packet drops and
node failures. To verify the correctness of the Rether
implementation, one needs to enumerate all possible
combinations of node/link failures, and check Rether
implementation’s reactions under each of these failure
scenarios. However, arriving at these failure scenarios
requires modifications to the kernel, because Rether
itself is implemented as a layer between the Ethernet
driver and the IP stack. This means that testing each
failure scenario requires kernel instrumentation and re-
compilation, a highly time-consuming and error-prone
process. Analysis of the packets that Rether generates
under specific failure scenario was also equally tedious,
because it involved collecting ������� traces and in-
specting them manually or through some simple test-
case specific filter programs. With such a scheme it was
not unusual to take one or multiple days to complete just
one test case. This experience motivated us to develop
an effective protocol testing infrastructure which can
provide the user an implementation independent way to
specify the scenarios to be verified. The result of this
effort is the network fault injection and response analysis
system called VirtualWire.

VirtualWire allows developers to specify which net-
work faults should happen when, using an event-based
scripting language, and injects these faults into actual
protocol test runs according to the high-level specifica-
tions. This obviates any code instrumentation inside the
kernel by the user. The same scripting language can also
be used to specify filters to determine in real time from
the network packet trace whether the protocol imple-
mentation under test generates appropriate responses for
given network faults. Essentially VirtualWire provides

Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

a virtual network abstraction on top of the physical
network used in a testbed, which could emulate any
collection of network faults according to a user-defined
script in a way that is independent of the protocols being
tested and the operating system of the testbed nodes. As
a result, network protocol developers/testers can insert
protocol-specific network faults into a testbed without
additional code instrumentation effort.

The goals achieved by VirtualWire are:
� Test the implementations of network protocols:

VirtualWire tests the actual implementation of net-
work protocols on real network testbeds without
requiring any code instrumentation.

� Generate realistic network faults: Virtual-
Wire faithfully injects a wide variety of network
faults and misbehaviors according to the user’s
specifications. The faults may be injected at multi-
ple points within the network and their occurrences
may be ordered through explicitly stated dependen-
cies.

� Simplify network fault injection:
VirtualWire provides a declarative scripting
language for developers to specify network faults
to be injected at run time. The specifications are
independent of the implementations, hence can be
reused for testing multiple versions of the same
protocol implementation.

� Automate packet trace interpretation: The script-
ing language in VirtualWire allows developers to
specify the desired response for a given test sce-
nario, which is matched against the network packet
trace resulting from actual protocol test runs. This
trace filtering capability makes it possible to run
through a large number of test cases without human
intervention, a particularly important feature for
regression testing.

The rest of the paper is organized as follows. We
compare VirtualWire with related research efforts in
Section 2. The architecture of VirtualWire is described in
Section 3. We describe the Fault Specification Language
in Section 4. In Section 5 we discuss the implementation
aspects of VirtualWire. Section 6 illustrates the utility
of VirtualWire with script examples. Section 7 gives
the run time performance overheads of VirtualWire. We
conclude in Section 8.

2. Related Work
In this section we will survey the research work

leading to the different methodologies aimed at uncov-
ering faults in systems. The idea of injecting faults into
a system to validate its capabilities under exceptional
conditions has been a well-known technique in hardware
testing. This idea is applied to test software systems by
injecting errors into it in a program-driven manner and
observing the response of the system to such exceptions.
This is called Software Implemented Fault Injection
(SWIFI). Some of the earlier works in SWIFI are FIAT
[6], Xception [7], DOCTOR [8], NFTAPE [9]. These

systems focus on testing a wide range of faulty behav-
iors. We believe that restricting the fault injection system
to test a specific property makes it compact, flexible and
easy-to-learn. VirtualWire is aimed at detecting faults in
communication protocol implementations.

We can categorize the approaches that are aimed at
detecting faults in implementations as follows, (i) static
analysis of the code using compiler extensions, (ii) static
analysis of the outputs as a result of interaction among
nodes running the protocol, and (iii) active probing.
Engler et al. uses static code analysis to catch code
invariants, e.g. permanently disabled interrupts [10].
This will, however, fail to cover the bugs that may
surface at run time and cannot be expressed using static
code patterns. Analyzing the outputs from a protocol’s
interactions to infer about the behavior, as used in
Tcpanaly [11], requires collecting large traces. Instead
we flag the error at run time by monitoring the protocol
invariant that the user specifies.

Active probing idea was introduced by Comer and Lin
[12]. Orchestra [13] extends it with the flexibility for
manipulating messages. Orchestra uses a fault injection
layer between the layer under test and the layer below
on the network stack. The user has to program the fault
injection experiment using ��� and �. When generating
test cases from the protocol specifications, it is more
intuitive to use a declarative language for generating
the fault injection experiments because like the design
specifications, the fault scenario description can be kept
separate from the specifics of implementation. There-
fore, we present a domain specific language with a set
of primitives that can represent all network faults, as well
as, perform analysis at run time. The Piranha project [14]
and Tsai [15] also uses active probing to corrupt/modify
packets to test system behavior. But they are limited in
the types of faults that can be tested.

Emulating network interactions is also a widely used
technique to observe the protocol behavior. Delayline
[16] provides a configurable environment for emulating
wide-area network over local-area network by specifying
topologies with different link delays. Dummynet [17]
can simulate different features of the network, like finite
queue size, limited bandwidth and delays. It can be used
to test real protocol implementations. However, they lack
the ability for packet manipulation.

3. System Overview
VirtualWire is a tool capable of testing network pro-

tocol implementations that are running in a distributed
manner across multiple nodes. In this section, we first
discuss the setup required for using VirtualWire as the
testing tool. We will then introduce the main components
of VirtualWire, which includes the programming front-
end that parses the input specifications and initiates
all the nodes in the testbed to start the test runs, a
Fault Injection Engine (FIE) that injects faults into
the network sessions in progress, and a Fault Analysis
Engine (FAE) that analyzes responses from the protocol

Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

control node

Kernel protocol stack

FIE FAE

Programming Tool

Hardware driver

Reliable Link Layer

FIE : Fault Injection Engine

FAE : Fault Analysis Engine

Testbed network
with switches/hubs

Kernel protocol stack

FIE FAE

Socket applications

Hardware driver

Reliable Link Layer

Kernel protocol stack

FIE FAE

Socket applications

Hardware driver

Reliable Link Layer

control plane protocol

Fig. 1. System Architecture: VirtualWire can be used to test
kernel stacks or user-level socket applications. Fault injection and
analysis layers reside on each node. The control node hosts the
programming tool that parses the user-defined fault injection and
analysis scripts and initializes the FIEs and FAEs for each test case
scenario through a control protocol. The control plane enables the
components in the system to communicate during initialization,
test case execution and error reporting.

implementation under test. As shown in Figure 1, each
testbed node includes a FIE and FAE engine, and one of
the testbed nodes serves as the control node that hosts
the programming front-end.

3.1. Testbed Environment

VirtualWire is designed to facilitate the testing of
any network protocol operating within a local area
network, e.g. a web server cluster. Thus a realistic
testbed that prototypes the actual system may consist
of hubs and switches connecting a set of host machines
using a shared bus or point-to-point links. It is assumed
that VirtualWire components can only be installed on
host machines and not on switches. Thus the latter
are invisible to VirtualWire as far as fault injection
is concerned. Since, we cannot install any software
on switches, additional nodes may need to be placed
to emulate faults on links whose adjacent nodes are
switches. We may also need to test a protocol in an
environment where not all the host systems are under
the control of the tester. In that case, the script has
to be written in a way so that we do not need to run
the FIE/FAE on that node. This is possible because the
network activity can be monitored completely either on
the sender or the receiver node.

3.2. Programming Front-end

The programming front-end in VirtualWire is intended
to make the specification of the faulty behavior easier for
the user. For this purpose a scripting language has been
designed, which is discussed in Section 4. The language
provides primitives to enable different kind of faults
in the network, like drop, delay, reorder, modification
or duplication of the packets. The language constructs
can also be used to inject program-driven faults in a
distributed fashion across multiple nodes. The idea is to
provide the flexibility of ordering the network events,
i.e. exchange of packets, and faults in the network in
a deterministic or non-deterministic fashion to specify

all possible test cases. A central node interprets the
script and initializes the test nodes with the relevant
data structures. In Figure 1 we refer the node hosting
the interpreter as the control node.

3.3. Fault Injection and Analysis Engine

The Fault Injection and Analysis Engine (FIE/FAE)
in VirtualWire is based on the concept of probing the
network traffic that is in progress and taking actions
on the packets based on user-defined specifications. An
important design criteria for the FIE/FAE is that inser-
tion of the layer should not require changes to the host
operating system. The FIE/FAE works by monitoring
and counting packets of interest that are exchanged
among the participating nodes. The FIE and FAE mod-
ules are inserted between the network interface card’s
device driver and the IP protocol stack, and therefore
can intercept all incoming/outgoing packets through the
hosts. The user-specified script dictates when the FIE
should trigger an action, which leads to a fault being
injected or a counter update. Similarly FAE tracks user-
defined invariants on some counter(s) and flags an error
on any violation.

Since VirtualWire supports distributed evaluation of
conditions, and execution of actions spread across mul-
tiple nodes, it requires a control protocol to exchange
state information (states of counters and terms) across
the hosts. An important consideration in the design of
a fault injection tool such as VirtualWire is that there
should not be any faults that it cannot account for.
Otherwise, it is difficult to present a truly “controlled”
environment for protocol testing. Toward this end, Vir-
tualWire implements a Reliable Link Layer (RLL) to
prevent MAC layer bit errors from causing a packet drop
when the FIE/FAE is unaware of the packet loss. The
RLL guarantees reliable delivery of packets handed over
to it by the VirtualWire layer, and is based on a simple
sliding window protocol.

4. Fault Specification Language
In this section we will briefly introduce the Fault

Specification Language (FSL) which enables the user
to write test case scenarios for fault injection and fault
analysis. Each scenario is an unordered set of rules,
which are ���������� �� ������� pairs. An action is
triggered whenever a condition is satisfied.

The goal of FSL is to define different network charac-
teristics. The data types are specific to this purpose. The
three data types are, packet definition, node definition,
and counter definition.

Packet definition is used to specify the packet types
that will be monitored by the VirtualWire FIE and FAE.
A packet definition is a logical AND-ing of all the tuples,
where each tuple consists of the starting offset of the
bytes to match, number of bytes to match, an optional
bit mask, and the hex pattern to look for. Example of
packet definitions are shown as part of the ��	�
� ��
	

in Figure 2.

Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

—————————————————————-
VAR SeqNoData, SeqNoAck;

FILTER TABLE
TCP data rt1 : (34 2 0x6000), (36 2 0x4000),

(38 4 SeqNoData), (47 1 0x10 0x10)
TCP ack rt1 : (34 2 0x4000), (36 2 0x6000),

(42 4 SeqNoAck), (47 1 0x10 0x10)
TCP syn : (34 2 0x6000), (36 2 0x4000),

(47 1 0x02 0x02)
TCP synack : (34 2 0x4000), (36 2 0x6000),

(47 1 0x12 0x12)
TCP data : (34 2 0x6000), (36 2 0x4000),

(47 1 0x10 0x10)
TCP ack : (34 2 0x4000), (36 2 0x6000),

(47 1 0x10 0x10)
END

NODE TABLE
node0 00:46:61:af:fe:23 192.168.1.1
node1 00:23:31:df:af:12 192.168.1.2
END
—————————————————————-
Fig. 2. Filter Table and Node Table: Examples of Packet Defi-
nitions and Node Definitions. The packet definitions are used to
distinguish different packets in TCP protocol. The node definitions
comprise the hardware address and the IP-address.

Node definition gives the mapping from hostname
to its MAC-address and IP-address. The list of node
identifiers is referred to as the ���� �����. An example
of Node Table is in Figure 2.

A counter definition in FSL is used to count the
events, which in essence is the send/receive event of
a specific packet type. It can also be used as a local
variable on a node. In this case, the counter has to be
explicitly controlled by the user-specified instructions.
The details of the syntax for counter definition can be
found in [18].

The semantics of FSL involves counters, terms and
conditions. A term in FSL is a boolean relation between
two counter values, or between a counter value and
an integer constant. FSL supports most of the �-like
relational operators, viz. 	,
, �, �, =, ��. A condition
is a logical expression of terms. The terms can be com-
bined using relational operators, like ���
��
���
to represent complex conditions. When a packet of a
particular type is encountered, VirtualWire could trigger
a counter update, which in turn could trigger a term
computation, leading to a condition evaluation and even-
tually executing an action that can either be an injected
fault or another counter update.

The set of primitives for manipulating the counters
and specifying the actions can be found in Table I and
Table II respectively.

5. System Implementation

In this section we describe the implementation of
the programming front-end and the Fault Injection and
Analysis Engine (FIE/FAE) in VirtualWire. The FAE
implementation is similar to the FIE because the basic

node table

filter table

<term id>

<condition id>

counter table

term table

<action id> condition table

<action, node id> action table

parser
(Cntr = 2) >>
ENABLE_CNTR(Cntr);

/* Packet and Node definitions */

Cntr: (pkt_type, node1, node2, SEND);

DROP(pkt_type, node1, node2, SEND);

FSL script

1 2 3 4 6 7 8

1 2 4 5 6 7

1 2 3 5 6 7 8

1 2 3 4

1 2 3 5 6 7 8

1 2 3 4 5 7 8 9

6 7

5

3

4

5

4

6

Fig. 3. Maintenance of Execution States in Fault Injection Engine:
The FSL parser generates six tables from the FSL script. The
tables are sent to all the participating nodes. The packet and
node definitions in the script set up the filter table and node table
respectively. In the figure, a matched packet has affected counter
4 in the counter table. Counter 4 uses the term-id it maintains to
index into the 5th entry in the term table. Similarly, 5th term entry
indexes using the condition-id stored in it to trigger evaluation of
the 4th condition. If 4th condition evaluates to true, it will use the
action index to trigger the 6th action in the action table.

mechanism of flagging errors is based on the same idea
of counting events based on packets transferred.

5.1. FSL Interpreter

The programming tool is a user level process active
on the control node. The user writes a script using the
specification language and submits it to the FSL parser
through a command line interface. The interpreter parses
the script to generate a set of six tables which are used to
initialize each FIE and FAE involved in the test scenario.
For simplicity, all FIEs and FAEs are sent the entire set
of tables even though each node may touch only a subset
of the entries in each table.

The ������ ����� and the ���� ����� are used for
classification of each packet. Hence these are static
tables, unless there is a variable in the filter table which
is defined at run time. The rest of the tables are used
to maintain VirtualWire’s execution states across all the
testbed nodes. These four tables are,

� counter table: A ������� ����� contains the
list of counters used in the scenario script. For
each counter entry, the parser generates pairs of
����� ��
 ��������� ��� that are dependent on
the counter’s value, as well as, the nodes which
need to be reached. A counter may appear in
multiple terms and a term may appear in multiple
conditions. Whenever a counter value changes we
need to update the term as well as, reevaluate the
conditions. Hence, it helps to tag which term and
condition will get affected by a particular counter.

� term table: A ���� ����� is indexed by ���� ��s,
with each entry storing term expression as a tuple
comprising ������� ��s or integer constant and
relational operator connecting them. A term expres-
sion is evaluated and stored when the corresponding
counter value changes.

Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

ASSIGN CNTR(counter id)
ENABLE CNTR(counter id)
DISABLE CNTR(counter id)
INCR CNTR(counter id, value)
DECR CNTR(counter id, value)
RESET CNTR(counter id)
SET CURTIME(counter id)
ELAPSED TIME(counter id)

TABLE I

Counter-Manipulation Primitives and Syntax

DROP(pkt type, node id, node id, SEND/RECV)
DELAY(pkt type, node id, node id, SEND/RECV, duration)
REORDER(pkt type, node id, node id, SEND/RECV, #pkts, order)
DUP(pkt type, node id, node id, SEND/RECV)
MODIFY(pkt type, node id, node id, SEND/RECV, pattern)
FAIL(node id)
STOP
FLAG ERR

TABLE II

Action-Specification Primitives and Syntax

(a)

Counter, Term,
Condition, and
Action tables

FIE logic

packet from higher or lower layer

[released packet]

Classifiers

(b)

match_packet

fwd_pkt

update_counter

data packet

evaluate_term

evaluate_condition

enable_actions trigger_actions

packet not consumed by an action

VirtualWire control packet

packet received

for remote condition evaluation
send control message with term id

Fig. 4. The Control Flow of Fault Injection Engine: (a) The
software architecture of the Fault Injection/Analysis Engine. The
“classifiers” denote the Filter Table and the Node Table used for
trapping the packets to monitor. The rest of the tables maintain
state information for the FIE/FAE. (b) The FIE control flow for
every packet that matches a packet definition in the Filter Table.
A matching packet denotes an event that will affect at least the
counter table. New counter value can turn a term true, which will
lead to a condition evaluation. If condition is satisfied it triggers
an action. A fault type action, like drop will consume the packet,
but a counter manipulation action will release the packet.

� condition table: A ��������� ����	 is indexed
by ��������� ��. It stores the condition expres-
sion in terms of �	
� ��s and logical opera-
tors connecting them. It also maintains a list of
����	 ��� ������ ��� pairs so that whenever a
condition is satisfied the action can be triggered.

� action table: An ������ ����	 is indexed by
������ ��s with each entry storing the action to be
performed and the corresponding node identifier.

The interactions among these tables are shown in
Figure 3. In FSL, one can specify a counter on a packet
type on one node that can trigger the computation of a
term maintained on a remote node. Similarly, a condition
that is found to be satisfied on one node can trigger an
action on another node.

5.2. Distributed Run-Time Engine

The main issue in the implementation of the Fault
Injection and the Analysis Engine (FIE/FAE) is to keep
the host Operating System untouched. We choose Linux
2.4 as the platform for this prototype implementation and
used the module infrastructure. The FIE/FAE engines
use the Netfilter facility provided in Linux 2.4 kernels
to register hooks to redirect the packets for classification.
The software architecture, therefore is as shown in
Figure 4(a).

Once a packet is identified to be belonging to the
classifier tables (Filter and Node Tables), it goes through
the logic as shown in Figure 4(b). An update counter
routine sets the value for the counter defined for that
packet type. An update of a counter must trigger evalu-
ation of the terms present on that node. A change in term
state leads to evaluation of the condition. The condition
may be local to that node, or may be composed of
terms being evaluated on different nodes. In the latter
case the changed term status is reported to the nodes
where the condition is evaluated. We chose to evaluate
the condition at the nodes, where an action dependent
on that condition, might have to be triggered. This is
followed by the triggering of actions, which can be a
fault type or a counter-update operation.

The different network faults supported in Virtual-
Wire are drop, delay, reorder, duplicate or modify (cor-
rupt) a packet. The implementation of the delay primitive
uses the software timer facility in Linux kernel. Hence
the granularity of delay can be no less than a jiffy,
i.e. 10 ms. The reorder and duplicate primitives are
implemented by queueing the specified set of packets
and then releasing them in burst when the bottom half
is scheduled next. Modification for the packet uses
random perturbation of the bytes. In this case, if a
user specifically wants to set the bytes, it is possible
to specify it. The checksum in such a case must be set
correctly by the user.

The distributed evaluation and execution in Virtu-
alWire is supported by a control plane protocol that
coordinates among the FIEs across multiple hosts. The
control plane messages are implemented as payloads of
raw Ethernet frames. Control messages are exchanged to
communicate changes in counter values and term state
to the appropriate nodes. For example, if a term has the
second operand as another counter and it is maintained
at a different node from the first operand counter, then
every time the counter value changes it needs to be sent
to the other node. Otherwise, if one of the operands is
an integer, then the term can be evaluated locally and a
term status is conveyed only in case of a change in its
status.

6. Illustrative Examples
In this section, we illustrate the usage of Virtual-

Wire using examples from TCP and Rether implemen-

Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

———————————————————————-
1. SCENARIO TCP SS CA algo
2. SYNACK : (TCP synack, node2, node1, RECV)
3. SA ACK : (TCP data, node1, node2, SEND)
4. DATA : (TCP data, node1, node2, SEND)
5. ACK : (TCP ack, node2, node1, RECV)
6. CWND: (node1)
7. CanTx : (node1)
8. CCNT : (node1)
9. SSTHRESH : (node1)

10. (TRUE) �� ENABLE CNTR(SYNACK) ;
11. ENABLE CNTR(SA ACK);
12. ENABLE CNTR(ACK);
13. ASSIGN CNTR(CWND, 1);
14. ASSIGN CNTR(CanTx);
15. ENABLE CNTR(CCNT);
16. ASSIGN CNTR(SSTHRESH, 2);

/* Fault Injection: Drop SynAck at Receiver node */
17. ((SYNACK � 0) && (SYNACK � 2)) ��

DROP TCP synack, node2, node1, RECV ;

/*** ANALYSIS SCRIPT ***/
/* ACK in response to SYNACK matches tcp data

18. ((SA ACK � 1)) �� ENABLE CNTR(DATA);
19. DISABLE CNTR(SA ACK);
20. ((DATA � 1)) �� RESET CNTR(DATA);
21. DECR CNTR(CanTx , 1);

/* slow-start */
21. ((CWND �� SSTHRESH) && (ACK � 1)) ��

RESET CNTR(ACK);
22. INCR CNTR(CWND, 1);
23. INCR CNTR(CanTx, 1);

/* congestion avoidance */
24. ((CWND � SSTHRESH) && (ACK � 1)) ��

RESET CNTR(ACK);
25. INCR CNTR(CanTx, 1);
26. INCR CNTR(CCNT, 1);
27. ((CWND � SSTHRESH) && (CCNT � CWND)) ��

RESET CNTR(CCNT);
28. INCR CNTR(CWND, 1);
29. INCR CNTR(CanTx, 1);

/* Number of data packets that can be sent out
is never negative */

30. ((CanTx � 0)) �� FLAG ERROR ;
31. END
———————————————————————-
Fig. 5. Script to test the implementation of the switch from
slow-start to congestion avoidance algorithm in TCP. This script
verifies whether the the implementation can detect the crossing of
the ssthresh value and trigger the congestion avoidance.

tations in Linux 2.4.17 kernel. VirtualWire module is
itself implemented for Linux 2.4 kernels. The test cases
demonstrate that simple and short fault injection and
analysis scripts can be used to test complex protocol
behaviors without any instrumentation of the protocol
code.

6.1. TCP Congestion Control Implementation in
Linux

In the following experiments, we setup a testbed
with two Pentium-4 machines running Linux 2.4.17 as
the host Operating System and inserted the Virtual-
Wire module using the Netfilter hook. We established a
TCP connection from port 24576 (������) of the sender

on ����� to the port 16384 (������) of the receiver
on �����. The packet types and the host nodes in the
experiments are defined in Figure 2. The priority of the
filter rules is in descending order of occurrence. If a
match is found with one rule then there is no need to
match the subsequent rules.

Two main algorithms in TCPs congestion control
mechanism are the slow-start and congestion avoidance,
as specified in [19]. When a connection is established,
TCP initializes 2 variables on the sender, congestion
window (����) and threshold value (���	
��). Ini-
tially, ���� can be set to 1, 2 or 4 times the TCP Maxi-
mum Segment Size (MSS), and ���	
��	 is ��KB. With
each successful transmission, the ���� is incremented
by 1 according to the slow-start algorithm till the number
of bytes transmitted reaches the ���	
��	 limit. Once
this limit is reached, the congestion avoidance algorithm
is triggered. If there is retransmission of any packet, then
���� is reset to 1, and ���	
��	 drops to half the size of
���� but not less than 2 MSS. The transmission reverts
to slow-start.

This experiment was aimed to test the transition of
TCP data transmission from slow-start algorithm to the
congestion avoidance algorithm once the ���� goes
above ���	
��	. The ���	
��	 value was manipulated
to 2 by dropping one ��
��� at the receiver during
connection establishment, as shown in Line 17 of the
script in Figure 5. It caused a retransmission of the
��
 packet. Hence ���	
��	 is reset to 2 and ����

to 1. In a correct implementation, in the next try when
the connection is established, the ���� should exceed
���	
��	 once 2 ���s come back, and must trigger
congestion avoidance. We keep track of each of these
packets in the analysis section of the script and flag
error if it does not conform to the expected result. The
TCP implementation in Linux 2.4.17 behaved correctly
by switching to congestion avoidance algorithm.

6.2. Token Passing in Rether

In this section, we will demonstrate a test scenario
using Rether protocol, that involves distributed rule
execution, i.e. counter update is done at a node different
from where the action, dependent on that counter, is
executed. The Rether protocol has been briefly explained
in Section 1. For the purpose of this experiment, we
have 4 nodes that are exchanging tokens in a circular
fashion. We will let ����� “fail” using the fault injection
script, and observe through the analysis script, if Rether
detects the failure and the token cycle is reconstructed
among the remaining nodes, so that the real time data
transport remains unaffected.

The packet types that need to be identified for this test
are defined in the Filter Table in Figure 6, where 0x9900
is the protocol identifier of a rether control packet. In
best-effort mode, the token circulates among the nodes
in a fixed round-robin order. Our Rether testbed consists
of four nodes in the following round-robin order: �����,
�����, �����, and �����. ����� and ����� have a real

Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

———————————————————————-
1. FILTER TABLE
2. tr token : (12 2 0x9900), (14 2 0x0001)
3. tr token ack : (12 2 0x9900), (14 2 0010)
4. TCP data : (34 2 0x6000), (36 2 0x4000)

(47 1 0x10 0x10)
5. END

6. SCENARIO Test Single Node Failure 1sec
7. CNT DATA : (TCP data, node1, node4, RECV)
8. TokensTo2 : (tr token, node1, node2, RECV)
9. TokensFrom2 : (tr token, node2, node3, SEND)
10. TokensTo4 : (tr token, node2, node4, RECV)
11. TokensTo1 : (tr token, node4, node1, RECV)

12. ((CNT DATA � 1000)) ��
ENABLE CNTR(TokensTo2);

13. ((TokensTo2 � 1)) �� FAIL(node3);
14. ENABLE CNTR(TokensFrom2);
15. RESET CNTR(TokensTo2) ;
16. ((TokensFrom2 � 3)) �� ENABLE CNTR(TokensTo4);
17. ((TokensTo4 � 1)) �� ENABLE CNTR(TokensTo1);

/*** ANALYSIS SCRIPT ***/
18. ((TokensFrom2 � 3)) �� FLAG ERROR;
19. ((TokensTo2 � 1) && (TokensTo4 � 1)

&& (TokensTo1 � 1)) �� STOP ;
20. END
———————————————————————-
Fig. 6. Script to test the implementation of token recovery in
Rether. The script knocks one node out of the ring and checks if
the token passing mechanism can recover by reconstructing the
ring without the “crashed” node.

time TCP-based client-server communication and �����
and ����� do not have any real time data to send.

In this test scenario, we let ����� “crash” using the
fault injection script, and observe through the analysis
script, if Rether detects the failure and the token cycle
is reconstructed among the remaining nodes. As shown
in the script in Figure 6, a fault is injected by crashing
����� when ����� receives a token following exchange
of ���� TCP data packets from �����. Since �����

receives the token, and as it is in best-effort mode it
must send the token to �����, which has crashed. Hence
fault detection mechanism should be able to reconstruct
the ring by detecting that there is no ������ ��� from
����� inspite of 3 retransmissions. The analysis script
verifies the fault detection mechanism by checking for
the 3 token retransmissions by �����. The recovery
protocol is verified by checking the packet sequence for
a round-robin visit of the token to the 3 remaining nodes
within an inactivity timeout period set at � sec. Since
the fault detection and recovery should complete within
� sec, an error is flagged if the scenario is terminated
due to inactivity.

7. Performance Evaluation
An important design constraint for a fault injection

tool is that it should not unintentionally introduce ex-
cessive delay that eventually distorts the behavior of the
protocol implementation under test. In this section, we
study the performance impact of VirtualWire on network

0 20 40 60 80 100
Data Pumping Rate by Sender (Mbps)

0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
bp

s)

without RLL
with RLL

Fig. 7. The plot shows the throughput that can be achieved with
the Fault Injection Layer inserted in the protocol stack and using
a TCP connection between 2 Pentium-4 hosts connected using a
100Mbps switch.

protocols and applications. We measure the throughput
and latency of TCP/UDP connections with and without
VirtualWire between two Pentium-4 machines connected
through a 100 Mbps switch. For all the experiments,
we have varied the number of packet type definitions
(or filters) from 1 to 25, and allowed 25 actions to be
triggered for each packet.

In Figure 7, the throughput of a TCP connection
between the 2 test machines is plotted against the
offered data pumping rate. There is a noticeable drop
in throughput beyond 90 Mbps. This is because the
Reliable Link Layer encapsulates both the TCP data
and the TCP ack packets. This generates �	
s at the
RLL level in both directions, increasing the chances of
collisions when the offered load is high, and degrading
the throughput. However, the throughput loss in this case
is within 10%.

The other important metric for assessing the intru-
siveness of VirtualWire is the extra latency it adds to
protocol processing. For this experiment, we used an
echo connection using UDP between the 2 test machines
and measured the packet round-trip latency with and
without VirtualWire. Figure 8 shows the percentage
increase in protocol processing time due to VirtualWire.
The time to process a packet grows linearly with the
number of packet types in each curve because the current
VirtualWire implementation searches linearly through
the packet type definitions for the exact match. With ac-
tions added, the overhead is increased as VirtualWire has
to update all the tables that are affected. Turning on
the Reliable Link Layer further increases the overhead.
However, with up to 25 packet types, the additional
packet processing overhead never goes beyond 7% of
the normal round-trip time.

Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

0 5 10 15 20 25 30
number of packet types to monitor

0

1

2

3

4

5

6

7

%
 in

cr
ea

se
 in

 p
ro

to
co

l p
ro

ce
ss

in
g

la
te

nc
y

rule-matching
rule-matching + action execution
rule-matching + action-execution with RLL

Fig. 8. The plot shows the additional overhead in protocol
processing due to the insertion of the Fault Injection layer. The
test was conducted by measuring the round-trip latency for a
packet over a UDP connection between 2 Pentium-4 hosts with
VirtualWire installed. The test was repeated with (i) 25 packet
matching rules, (ii) 25 packet matching rules plus each packet
match triggering 25 actions, and (iii) case(ii) with RLL turned on.
The percentage increase in latency even with RLL is around 7%.

8. Conclusion and Future Work
Testing a distributed application or a network protocol

implementation is fundamentally hard. It is not sufficient
to devise meaningful test cases. Developers are also
plagued with the lack of tools to automate the process
of injecting targeted faults into the network under test
and of analyzing the large amount of resulting packet
traces for non-compliant behaviors. As a result, the fault
injection and packet trace analysis tasks are performed
in an ad hoc and manual fashion. Worse yet, they have
to be repeated from scratch every time a new network
protocol or new distributed application is to be tested.

In this paper, we present a distributed network fault
injection and analysis tool called VirtualWire, which
can automate most of the testing processes in a protocol-
independent way. Instead of instrumenting the protocol
under test and manually inspecting packet traces, users
can write a script that describes the faulty scenarios
that should take place at certain time and the expected
resulting packet sequences in response to these faulty
scenarios. The script is in the form of event and action
pairs, also called rules. In this scripting language, events
and actions may be distributed over multiple network
nodes and implicitly ordered through special language
constructs, thus providing the flexibility to accommodate
complex test case specification.

Using this tool, the task of protocol testing is elevated
to a much higher level in defining proper test cases rather
than spending time in writing low level customized code
to inject faults and to analyze packet traces. By pushing
the low-level chores of network protocol testing to an
automated script-driven tool, VirtualWire significantly
improves the productivity of protocol implementation
development, and greatly facilitates regression testing of

newer versions of protocol implementations.
Finally, as a long term goal of the VirtualWire project

it will be interesting to investigate the possibility of
generating the fault injection and packet trace analysis
scripts directly from the protocol specification. This will
truly make the testing process completely automated
by relieving the testing team of the task of script
development.

Acknowledgement
This research is supported by NSF awards ANI-
9814934, ACI-9907485, and ACI-0083497, USENIX
student research grants, as well as fundings from Na-
tional Institute of Standards and Technologies, Siemens,
and Rether Networks Inc.

References
[1] G. Holzmann, Design and Validation of Computer Protocols.

Prentice Hall, 1991.
[2] “Vint,” http://netweb.usc.edu/vint.
[3] S.Keshav, “Real: a network simulator,” University of California

at Berkeley, Berkeley, California, Tech. Rep., 1988.
[4] C. Venkatramani and T. Chiueh, “The design, implementation

and evaluation of a software-based real-time ethernet protocol,”
in ACM SIGCOMM, 1995.

[5] S. Sharma, K. Gopalan, N. Zhu, G. Peng, P. De, and T. Chiueh,
“Implementation experiences of bandwidth guarantee on a wire-
less lan,” in ACM/SPIE Multimedia Computing and Networking
(MMCN), 2002.

[6] Z. Segall and T. Lin, “Fiat: Fault-injection based automated
testing environment,” in 18th Int’l Symposium on Fault Tolerant
Computing, 1988.

[7] J. Carreira, H. Madeira, and J. G. Silva, “Xception: Software
fault injection and monitoring in processor functional units,”
in 5th IFIP Int’l Working ConferenceDependable Computing of
Critical Applications (DCCA), Sept. 1995.

[8] S. Han, H. A. Rosenberg, and K. G. Shin, “Doctor: An integrated
software fault injection environment for distributed systems,” in
IEEE International Computer Performance and Dependability
Symposium, 1995.

[9] D. Stott, B. Floering, Z. Kalbarczyk, and R. K. Iyer, “Nftape:
A framework for assessing dependability in distributed systems
with lightweight fault injectors,” in 4th IEEE International
Computer Performance and Dependability Symposium (IPDS-
2K), 2000.

[10] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking system
rules using system-specific, programmer-written compiler exten-
sions,” in OSDI, 2000.

[11] V. Paxson, “Automated packet trace analysis of tcp implementa-
tions,” in ACM SIGCOMM, 1997.

[12] D. E. Comer and J. C. Lin, “Probing tcp implementations,” in
USENIX, June 1994.

[13] S. Dawson, F. Jahanian, and T. Mitton, “Orchestra: A fault injec-
tion environment for distributed systems,” in 26th International
Symposium on Fault-Tolerant Computing (FTCS), 1996.

[14] J. L. Griffin, “Testing protocol implementation robustness,” in
29th International Symposium on Fault-Tolerant Computing,
1999.

[15] T. Tsai and N. Singh, “Reliablity testing of applications on win-
dows nt,” in International Conference on Dependable Systems
and Networks (DSN), 2000.

[16] D.B.Ingham and G.D.Parrington, “Delayline: A wide-area net-
work emulation tool,” in Computing Systems, 1994.

[17] L. Rizzo, “Dummynet: a simple approach to the evaluation of
network protocols,” in ACM computer Communications Review,
1997.

[18] P. De, A. Neogi, and T. Chiueh, “Virtualwire: A fault injection
and analysis tool for network protocols,” Stony Brook University,
Tech. Rep., 2002, http://www.ecsl.cs.sunysb.edu/tr/TR132.ps.gz.

[19] W.Stevens, “Tcp slow start, congestion avoidance, fast retrans-
mit, and fast recovery algorithms,” 1997.

Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

